Dynamic adaptive streaming over HTTP (DASH) is widely used for video streaming on mobile devices. Ensuring a good quality of experience (QoE) for mobile video streaming is essential, as it severely impacts both the network and content providers’ revenue. Thus, a good rate adaptation algorithm at the client end that provides high QoE is critically important. Recently, a segment size-aware rate adaptation (SARA) algorithm was proposed for DASH clients. However, its performance on mobile clients has not been investigated so far. The main contributions of this article are twofold: (1) We discuss SARA’s implementation for mobile clients to improve the QoE in mobile video streaming, one that accurately predicts the download time for the next segment and makes an informed bitrate selection, and (2) we developed a new parametric QoE model to compute a cumulative score that helps in fair comparison of different adaptation algorithms. Based on our subjective and objective evaluation, we observed that SARA for mobile clients outperforms others by 17% on average, in terms of the Mean Opinion Score, while achieving, on average, a 76% improvement in terms of the interruption ratio. The score obtained from our new parametric QoE model also demonstrates that the SARA algorithm for mobile clients gives a better QoE among all the algorithms.
Objective Quality of Experience (QoE) for Dynamic Adaptive Streaming over HTTP (DASH) video streaming has received considerable attention in recent years. While there are a number of objective QoE models, a limitation of the current models is that the QoE is provided after the entire video is delivered; also, the models are on a per client basis. For content service providers, QoE observed is important to monitor to understand ensemble performance during streaming such as for live events or concurrent streaming when multiple clients are streaming. For this purpose, we propose Moving QoE (MQoE, in short) models to measure QoE during periodically during video streaming for multiple simultaneous clients. Our first model MQoE_RF is a nonlinear model considering the bitrate gain and sensitivity from bitrate switching frequency. Our second model MQoE_SD is a linear model that focuses on capturing the standard deviation in the bitrate switching magnitude among segments along with the bitrate gain. We then study the effectiveness of both models in a multi-user mobile client environment, with the mobility patterns being based on traces from a train, a car, or a ferry. We implemented the study on the GENI testbed. Our study shows that our MQoE models are more accurate in capturing the QoE behavior during transmission than static QoE models. Furthermore, our MQoE_RF model captures the sensitivity due to bitrate switching frequency more effectively while MQoE_SD captures the sensitivity due to the magnitude of the bitrate switching. Either models are suitable for content service providers for monitoring video streaming based on their preference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.