An integrated model for gear pair that combines the dynamic load with the mixed elasto-hydrodynamic lubrication (EHL) theory is proposed in this paper covering the film squeeze effect as well as the friction force generated from the rough surfaces. Compari-sons between the two models of load which are, respectively, based on minimum elastic potential energy (MEPE) criterion and dynamic motion equations built up in this paper are discussed. The results show that at low speed the loads calculated by the two models are similar. However, with increasing speed, the load exhibits dynamic characteristics gradually and reaches the highest value at resonant speed. Besides, the effects of the helix angle and the lubricant viscosity are also analyzed. Increasing the ambient viscosity could intensify the film stiffness and viscous damping. Gear with larger helix angle could weaken the impact phenomenon at the shift points where one tooth-pair disengages. Moreover, it is symmetric with regard to the pressure and film thickness across the face width for spur gear. Differently, the pressure for helical gear has a higher value at the dedendum of pinion where the film becomes thinner. In addition, speeding up the pinion would generally result in higher dynamic load and film pressure but thicker film thickness. [DOI: 10.1115/1.4007842]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.