As part of the Southeast United States‐based Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), and collinear with part of the Southeast Atmosphere Study, the University of Wisconsin High Spectral Resolution Lidar system was deployed to the University of Alabama from 19 June to 4 November 2013. With a collocated Aerosol Robotic Network (AERONET) sun photometer, a nearby Chemical Speciation Network (PM2.5) measurement station, and near daily ozonesonde releases for the August–September SEAC4RS campaign, the site allowed the region's first comprehensive diurnal monitoring of aerosol particle vertical structure. A 532 nm lidar ratio of 55 sr provided good closure between aerosol backscatter and AERONET (aerosol optical thickness, AOT). A principle component analysis was performed to identify key modes of variability in aerosol backscatter. “Fair weather” days exhibited classic planetary boundary layer structure of a mixed layer accounting for ~50% of AOT and an entrainment zone providing another 25%. An additional 5–15% of variance is gained from the lower free troposphere from either convective detrainment or frequent intrusions of western United States biomass burning smoke. Generally, aerosol particles were contained below the 0°C level, a common level of stability in convective regimes. However, occasional strong injections of smoke to the upper troposphere were also observed, accounting for the remaining 10–15% variability in AOT. Examples of these common modes of variability in frontal and convective regimes are presented, demonstrating why AOT often has only a weak relationship to surface PM2.5 concentration.
[1] This paper presents ozone structures measured by a ground-based ozone lidar and ozonesonde at Huntsville, Alabama, on 27-29 April 2010 originating from a stratosphere-to-troposphere transport event associated with a cutoff cyclone and tropopause fold. In this case, the tropopause reached 6 km and the stratospheric intrusion resulted in a 2-km thick elevated ozone layer with values between 70 and 85 ppbv descending from the $306-K to 298-K isentropic surface at a rate of $5 km day À1 . The potential temperature was provided by a collocated microwave profiling radiometer. We examine the corresponding meteorological fields and potential vorticity (PV) structures derived from the analysis data from the North American Mesoscale model. The 2-PVU (PV unit) surface, defined as the dynamic tropopause, is able to capture the variations of the ozone tropopause estimated from the ozonesonde and lidar measurements. The estimated ozone/PV ratio, from the measured ozone and model derived PV, for the mixing layer between the troposphere and stratosphere is $41 ppbv/PVU with an uncertainty of $33%. Within two days, the estimated mass of ozone irreversibly transported from the stratospheric into the troposphere is between 0.07 Tg (0.9 Â 10 33 molecules) and 0.11 Tg (1.3 Â 10 33 molecules) with an estimated uncertainty of 59%. Tropospheric ozone exhibited enormous variability due to the complicated mixing processes. Low ozone and large variability were observed in the mid-troposphere after the stratospheric intrusion due to the westerly advection including the transition from a cyclonic system to an anticyclonic system. This study using high temporal and vertical-resolution measurements suggests that, in this case, stratospheric air quickly lost its stratospheric characteristics once it is irreversibly mixed down into the troposphere.Citation: Kuang, S., M. J. Newchurch, J. Burris, L. Wang, K. Knupp, and G. Huang (2012), Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site,
4 Abstract-A tropospheric ozone Differential Absorption Lidar 5 system, developed jointly by The University of Alabama in 6 Huntsville and the National Aeronautics and Space Adminis· 7 tratioD, is making regular observations of ozone vertical diss tributions between 1 and 8 km with two receivers under both 9 daytime and nighttime conditions using lasers at 285 and 291 run. 10 This paper describes the Udar system and analysis technique 11 with some measurement examples. An iterative aerosol correction I2 procedure reduces the retrieval error arising from differential 13 aerosol backscatter in the lower troposphere. -Lidar observations 14 with coincident ozonesonde flights demonstrate that the retrieval 15 accuracy ranges from better than 10% below 4 km to better 16 than 20% below 8 kin with 7S0·m vertical resolution and 10·min 17 temporal integration.
The Langley mobile ozone lidar (LMOL) is a mobile ground-based ozone lidar system that consists of a pulsed UV laser producing two UV wavelengths of 286 and 291 nm with energy of approximately 0.2 mJ/pulse and repetition rate of 1 kHz. The 527 nm pump laser is also transmitted for aerosol measurements. The receiver consists of a 40 cm parabolic telescope, which is used for both backscattered analog and photon counting. The lidar is very compact and highly mobile. This demonstrates the utility of very small lidar systems eventually leading to space-based ozone lidars. The lidar has been validated by numerous ozonesonde launches and has provided ozone curtain profiles from ground to approximately 4 km in support of air quality field missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.