The droplet transition of electrical arc welding is a complicated process that combines heat, mass and momentum transfer. A high-speed camera system with laser in the background is established to observe the fast changing process of molten droplet transition. A group of high-speed camera pictures which indicate the droplet gravity center is unstable in welding metal transfer process are taken and analyzed. The experimental results show that the electromagnetic force is the unstable root of the droplet gravity center.
Fuzzy controller of arc-length in welding process was studied. It studied a fuzzy control method of the base time as a control variable and the arc peak voltage as controlled variable. In order to achieve a stable arc welding process, it modulated the pulse frequency by the PFM method. The experimental results showed that the adjust effects of arc-length control was good and the welding was stability.
The droplet transition of electrical arc welding is a complicated process that combines heat, mass and momentum transfer. A high-speed camera system with laser in the background is established to observe the fast changing process of droplet transition. A group of high-speed camera pictures which indicate that the size and shape of droplet have strong uncertainty are taken and analyzed. The results show that the randomness of droplet size and shape are decided by its internal and external random factors, such as: the changing of the length of welding wire stretched out, the fluctuation of the feed speed of welding wire etc.
<p>With the successful launch of the last Geostationary Earth Orbit (GEO) satellite in June 2020, China has completed the construction of the third generation BeiDou navigation satellites system (BDS-3). BDS-3 global services have been initiated in July 2020 with the constellation of 3 GEO, 3 Inclined Geosynchronous Orbit (IGSO) and 24 Medium Earth Orbit (MEO) satellites. In order to further improve the performance of BDS-3 services, the quality of BDS-3 precise orbit product needs further enhancements.</p><p>&#160;&#160;&#160;&#160;&#160;&#160; The solar radiation pressure (SRP) is the main non-conservative orbit perturbation for GNSS satellites and is the key to improve BDS-3 precise orbit determination. In this study, we focus on the SRP models for BDS-3 satellites. Firstly, the widely used Extended CODE Orbit Model with five parameters (ECOM-5) is assessed. With one-year observations of 2020 from both iGMAS and MGEX networks, the five parameters of ECOM model (D0, Y0, B0, Bc and Bs) are estimated for each BDS-3 satellite. The D0 estimates show an obvious dependency on the elevation angle of the Sun above the satellite orbital plane (denoted as &#946;). In addition, large variations can be noticed in eclipse seasons, which indicate the dramatic changes of SRP. The Y0 estimates vary from -0.6 nm/s<sup>2</sup> to 0.6 nm/s<sup>2</sup> for MEO, -1.0 to 1.0 nm/s<sup>2</sup> for IGSO and -1.0 to 1.5 nm/s<sup>2</sup> for GEO satellites. The B0 estimates of several satellites exhibit a clear dependency on the &#946; angle. The largest variation of B0 appears at C45 and C46, changing from 1.0 nm/s<sup>2</sup> at 15 deg to 8.3 nm/s<sup>2</sup> at 64 deg, which implies that the solar panels of these two satellites may have an obvious rotation lag. To compensate the deficiencies of BDS-3 SRP modeling, we introduce several additional parameters into ECOM-5 model (e.g. introducing higher harmonic terms). The POD performances can be improved by about 10% and 40% for BDS-3 MEO/IGSO and GEO satellites, respectively.</p><p>&#160;&#160;&#160;&#160;&#160;&#160; Except for the empirical model, we also study the semi-empirical SRP model such as the a priori box-wing model. Since the geometrical and optical properties from BDS-3 metadata are general and rough, we apply more detailed geometrical and optical coefficients for BDS-3 satellites. The POD performance can be improved by about 10% compared to empirical SRP models. Furthermore, considering Earth radiation pressure will have an impact of about 1.3 cm in radial component for MEO satellites.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.