Macroporous temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPA) hydrogels were prepared by a novel phase‐separation technique to improve the response properties. In comparison with a conventional PNIPA hydrogel prepared in water, these macroporous hydrogels, prepared by polymerization in aqueous sucrose solutions, have higher swelling ratios at temperatures below the lower critical solution temperature and exhibit much faster response rates to temperature changes.
Scanning electron microscopy image of the surface of a PNIPA hydrogel, prepared in 1.50 M aqueous sucrose solution.magnified imageScanning electron microscopy image of the surface of a PNIPA hydrogel, prepared in 1.50 M aqueous sucrose solution.
The controllable and sustained release of DNA from the surfaces of biomaterials or biomedical devices represents a new method for localized gene delivery. We report the synthesis of a novel polycation containing disulfide bonds in its backbone and the fabrication of polycation/plasmid DNA multilayered thin films by layer-by-layer assembly. The films are very stable during preparation and in storage, however, they gradually degrade and release the incorporated DNA when incubated in PBS buffer containing dithiothreitol (DTT), which results from the degradation of a disulfide-contained polymer under reductive conditions. The film degradation rate and DNA release rate can be tuned by the concentration of reducing agent. This approach will be useful in gene therapy and tissue engineering by controlled administration of therapeutic DNA deposited on the surface of implantable biomedical devices or tissue engineering scaffolds.
The model drugs ibuprofen (IBU) and tegafur (T-Fu) were loaded into poly[N-isopropylacrylamide-co-(acryloyl beta-cyclodextrin)] [P(NIPA-co-A-CD)] and PNIPA hydrogels by immersing dried gels in IBU or T-Fu alcohol solutions until they reached equilibrium. Drug release studies were carried out in water at 25 degrees C. In contrast to the release time of conventional PNIPA hydrogel, that of IBU from the beta-CD incorporated hydrogel was significantly prolonged and the drug loading was also greatly increased, which may be the result of the formation of inclusion complexes between CD and ibuprofen. However, another hydrophilic drug, tegafur, did not display these properties because it could not form a complex with the CD groups. [diagram in text].
The importance of mitochondrial delivery of an anticancer drug to cancer cells has been recognized to improve therapeutic efficacy. The introduction of lipophilic cations, such as triphenylphosphonium (TPP), onto the surface of nanocarriers was utilized to target mitochondria via strong electrostatic interactions between positively charged TPP and the negatively charged mitochondrial membrane. However, the highly positive charge nature of TPP leads to rapid clearance from the blood, decrease of circulation lifetime, and nonspecific targeting of mitochondria of cells. Here, we report a strategy for improving the anticancer efficacy of paclitaxel via redox triggered intracellular activation of mitochondria-targeting. The lipid-polymer hybrid nanoparticles (LPNPs) are composed of poly(d,l-lactide-co-glycolide) (PLGA), a TPP-containing amphiphilic polymer (C-PEG-TPP) and a reduction-responsive amphiphilic polymer (DLPE-S-S-mPEG). The charges of TPP in LPNPs were almost completely shielded by surface coating of a PEG layer, ensuring high tumor accumulation. After uptake by cancer cells, the surface charges of LPNPs were recovered due to the detachment of PEG under intracellular reductive conditions, resulting in rapid and precise localization in mitochondria. This kind of simple, easy and practicable mitochondria-targeting nanoplatform showed high anticancer activity, and the activatable strategy is valuable for developing a variety of nanocarriers for application in the delivery of other drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.