Eukaryotic MutS homolog 6(MSH6) is a DNA mismatch recognition protein associated with mismatch repair of simple base-base mispairs and small insertion-deletion loops. As replication or recombination errors generated during embryonic development of living organisms should be efficiently corrected to maintain the integrity of genetic materials, we attempted to study MSH6 gene expression in developing zebrafish (Danio rerio) and the influence of MSH6 expression on the production of mismatch binding factors. A full-length cDNA encoding zebrafish MSH6 (zMSH6) was first obtained by rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of zMSH6 shares 57% and 56% identity with human and mouse MSH6, respectively. The 190-kDa recombinant zMSH6 containing 1,369 amino acids bound preferentially to a heteroduplex than to a homoduplex DNA. Northern blot and semiquantitative RT-PCR analysis detected apparent levels of zMSH6 mRNA expression in 12 and 36-hr-old zebrafish embryos, while this expression in 84-hr-old larvae was dramatically reduced to 23% of that in 12-hr-old embryos when b-actin mRNA was constitutively synthesized. Incubation of G-T and G-G heteroduplex probes with 12 to 60-hr-old zebrafish extracts produced predominantly high-shifting binding complexes with very similar band intensity. Although low in zMSH6 mRNA production, the extracts of 84-hr-old larvae interacted significantly stronger than the embryonic extracts with both G-T and G-G mispairs, producing high and low-shifting complexes. Heteroduplex-recognition proteins in 108-hr-old larvae gave a similar pattern of mismatch binding. The intensities of G-T complexes produced by 84 and 108-hr-old zebrafish extracts were 2.5 to 3-fold higher than those of G-G complexes. Our data indicate that the production of efficient MSH6-independent binding factors, particularly G-T-specific recognition proteins, is upregulated in zebrafish at the larval stage when MSH6 gene activity is downregulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.