Silting in river is a dynamic process, so it needs to regular desilting. At present, underwater siltation monitoring is still in its early days and based on experience. This paper puts forward the criterion of discrimination, in which the flood discharge section is decreased by 20%. It used the method of steady uniform flow in open rectangular and trapezoidal channel for calculation. The results show that reference values of dredging thickness in different section forms were determined. Siltation thicknesses of rectangular channel are linearly related to water depth. And the reduction rate of trapezoidal channel has a quadratic function relation with silting thicknesses. They were proportional to channel width and their rates trended to mitigation when the bottom width and flood depth were constant. In addition, the reference value of dredging thickness should be determined by combining with the bottom width, surface width, water depth and other actual situation.
A large amount of silt may be produced in river and lake regulation. It not only occupies land but also pollutes the environment. Therefore, it is urgent to seek effective disposal and utilization methods. Based on the problems of poor stability of stabilized soil and its tendency to soften easily in water, as well as its low strength with low curing agent dosage, this paper proposes a method to improve stabilized soil’s solidification effect by adding materials such as cement, lime, fly ash, triethanolamine, sodium hydroxide, sodium silicate, etc., while mixing different grain diameters and quantities of building waste materials and ordinary sand. Using construction waste and ordinary sand as a comparative test, the curing mechanism of construction waste debris on the mechanical properties, permeability, and microstructure of solidified sludge was studied through unconfined compression tests, dry and wet cycle tests, permeability tests, and micro-structure tests such as XRD, MIP, and SEM. The test results show that the strength increases 8.5%~72.1% by adding building waste materials, and it grew with the increase in particle size and amount. It reduced the content of large pore size of solidified sediment and optimized the internal pore structure. At the same time, it formed a new structure filled by rigid skeleton material. Thus, it improved its unit section stress, built up the curing effect and water stability. The findings of this study can be used to modify solidified silt to improve stability and compaction characteristics.
The article analyzes the impact of a constructing sewage treatment plant on the built seawall nearly by PLAXIS finite element software, located on the coast eastern Zhejiang. As the construction carrying on, the settlement and horizontal displacement are gradually increasing on the top and backwater slope of the seawall. The settlement on the top of Seawalls is 35.91 cm, the horizontal displacement is 50.76 cm; the settlement on the back slope is 71.45 cm, the horizontal displacement is 48.54cm. During the construction process, settlement increase rate at the foot of the backwater slope was significantly larger than that at the top of the seawalls. The horizontal displacement increase rate at the top of the seawalls was slightly larger than that at the foot of the backwater slope. The settlement and horizontal displacement of the seawall exceed the normal allowable deformation, which threatens the safety of the seawall. It is necessary to take reinforcement measures for the seawall to ensure safe operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.