Diabetes-induced atherosclerotic cardiovascular disease is the leading cause of death of diabetic patients. Neuronal regulation plays a critical role in glucose metabolism and cardiovascular function under physiological and pathological conditions, among which, neurotransmitter neuropeptide Y has been shown to be closely involved in these two processes. Elevated central neuropeptide Y level promotes food intake and reduces energy expenditure, thereby increasing adiposity. Neuropeptide Y is co-localized with noradrenaline in central and sympathetic nervous systems. As a major peripheral vascular contractive neurotransmitter, through interactions with its receptors, neuropeptide Y has been implicated in the pathology and progression of diabetes, by promoting the proliferation of endothelial cells and vascular fibrosis, which may contribute to diabetes-induced cardiovascular disease. Neuropeptide Y also participates in the pathogenesis of atherosclerosis, the major form of cardiovascular disease, via aggravating endothelial dysfunction, growth of vascular smooth muscle cells, formation of foam cells and platelets aggregation. This review highlights the causal role of neuropeptide Y and its receptor system in the development of diabetes mellitus and one of its complications: atherosclerotic cardiovascular disease. The information from this review provides both critical insights onto the mechanisms underlying the pathogenesis of atherosclerosis and evidence for the development of therapeutic strategies.
Cold exposure is considered to be a form of stress and has various adverse effects on the body. The present study aimed to investigate the effects of chronic daily cold exposure on food intake, body weight, serum glucose levels and the central energy balance regulatory pathway in mice fed with a high-fat diet (HFD). C57BL/6 mice were divided into two groups, which were fed with a standard chow or with a HFD. Half of the mice in each group were exposed to ice-cold water for 1 h/day for 7 weeks, while the controls were exposed to room temperature. Chronic daily cold exposure significantly increased energy intake, body weight and serum glucose levels in HFD-fed mice compared with the control group. In addition, 1 h after the final cold exposure, c-fos immunoreactivity was significantly increased in the central amygdala of HFD-fed mice compared with HFD-fed mice without cold exposure, indicating neuronal activation in this brain region. Notably, 61% of these c-fos neurons co-expressed the neuropeptide Y (NPY), and the orexigenic peptide levels were significantly increased in the central amygdala of cold-exposed mice compared with control mice. Notably, cold exposure significantly decreased the anorexigenic brain-derived neurotropic factor (BDNF) messenger RNA (mRNA) levels in the ventromedial hypothalamic nucleus and increased growth hormone releasing hormone (GHRH) mRNA in the paraventricular nucleus. NPY-ergic neurons in the central amygdala were activated by chronic cold exposure in mice on HFD via neuronal pathways to decrease BDNF and increase GHRH mRNA expression, possibly contributing to the development of obesity and impairment of glucose homeostasis.
The proliferation-promoting effect of neuropeptide Y (NPY) always functions in low-serum-cultured vascular smooth muscle cells (VSMCs), and the phenotypic switch of VSMCs is regulated by concentrations of serum. Whether the property of the NPY proliferative effect in VSMCs relies on phenotype of VSMCs is unclear. We aimed to explore the role of NPY on proliferation of different VSMC phenotypes in the pathogenesis of atherosclerosis. By stimulating A10 cells with 200 nM NPY in 0.5 or 10% serum, 3H-thymidine and 5-ethynyl-2'-deoxyuridine (EdU) and CCK8 measurements were used to detect VSMC proliferation. RT-PCR and Flow cytometry were performed to detect the factors involved in different properties of the NPY proliferative effect in VSMCs. Instead of facilitating proliferation, NPY had no significant effect on the growth of VSMCs when cultured in 10% serum (VSMCs stayed at synthetic states). The underlying mechanism may be involved in down-regulation of Y1 receptor (P < 0.05 vs. Vehicle) and up-regulation of Geminin (P < 0.05 vs. Vehicle) in 10% serum-cultured VSMCs co-incubated with 200 nM NPY. Besides, modulation of Geminin was effectively blocked by the Y1 receptor antagonist. The stimulation of NPY on proliferation of VSMCs could be a double-edged sword in the development of atherosclerosis and thus provides new knowledge for therapy of atherosclerosis.
The receptor activator of nuclear factor-κB ligand (RANKL) modulates energy metabolism. However, how RANKL regulates energy homeostasis is still not clear. This study aims to investigate the central mechanisms by which central administration of RANKL inhibits food intake and causes weight loss in mice. We carried out a systematic and in-depth analysis of the neuronal pathways by which RANKL mediates catabolic effects. After intracerebroventricle (i.c.v.) injection of RANKL, the expression of neuropeptide Y (NPY) mRNA in the Arc was significantly decreased, while the CART mRNA expression dramatically increased in the Arc and DMH. However, the agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) mRNA had no significant changes compared with control groups. Together, the results suggest that central administration of RANKL reduces food intake and causes weight loss via modulating the hypothalamic NPY/CART pathways.
Geminin is an inhibitor of DNA replication licensing and cell cycle. Our previous study demonstrates that Geminin plays an important role in regulating phenotypic diversity and growth of vascular smooth cells (VSMCs). Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is an epigenetic coordinator, whose RING domain confers intrinsic E3 ligase activity, mediating the ubiquitination of several proteins and the protein–protein interaction. Aberrant expression of UHRF1 was related to aggressiveness of multiple human malignancies, where knockdown of UHRF1 led to decreased proliferation of cancer cells. However, it is unclear whether proper UHRF1 function is involved in aberrant proliferation and phenotypic switching of VSMCs via altering Geminin protein levels. In present study, in UHRF1-overexpressing A10 cells, 3H-thymidine and 5-ethynyl-20-deoxyuridine (EdU) and CCK8 were used to examine the proliferation of VSMCs. RT-PCR and Western blot analyses were performed to investigate whether UHRF1-mediated effects were achieved by altering Geminin expression in VSMCs. RNA-seq analysis was performed to dissect related mechanisms or signaling pathways of these effects. The results of in vitro experiments suggested that UHRF1 prompted proliferation and cell cycle of VSMCs via the down-regulation of Geminin protein levels with no change in Geminin mRNA expression. Besides, PI3K-Akt signaling pathway was increased upon UHRF1 up-regulation. Our study demonstrated that overexpressing UHRF1 was involved in VSMCs proliferation through reducing inhibitory Geminin protein levels to promote cell cycle as well as activating PI3K-Akt signaling. This may provide key knowledge for the development of better strategies to prevent diseases related to VSMCs abnormal proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.