High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe-MoS junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.
Single‐layered MoS2 is a naturally stable material. Integrating spin, valley, and circularly polarized photons is an interesting endeavor to achieve advanced spin‐valleytronics. In this study, room‐temperature ferromagnetism in MoS2 induced by the magnetic proximity effect (MPE) of yttrium iron garnet (YIG) and the antiferromagnetic coupling at the interface is demonstrated. Insulating YIG without charge carriers is an excellent magnetic candidate featuring a long spin diffusion length and remarkable surface flatness, enabling long‐range magnetic interactions with MoS2. Spin‐resolved photoluminescence spectroscopy and magnetic circular dichroism (MCD) reveal that the spin‐polarized valleys of MoS2 can achieve sustained ferromagnetism even at room temperature. The bandgap‐sensitivity of MCD further demonstrates the extent of antiferromagnetic coupling between the MPE‐induced moments of MoS2 and YIG. This work provides a layer‐selected approach to study magnetic interactions/configurations in the YIG/MoS2 bilayer and highlights the role of MoS2 in achieving the MPE toward high temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.