Aesthetic properties of fabrics have been considered as the most important fabric attribute for years. However, recently there has been a paradigm shift in the domain of textile material applications and consequently more emphasis is now being given on the mechanical and functional properties of fabrics rather than its aesthetic appeal. Moreover, in certain woven fabrics used for technical applications, strength is a decisive quality parameter. In this work, tensile strength of plain woven fabrics has been predicted by using two empirical modelling methods namely artificial neural network (ANN) and linear regression. Warp yarn strength, warp yarn elongation, ends per inch (EPI), picks per inch (PPI) and weft count (Ne) were used as input parameters. Both the models were able to predict the fabric strength with reasonably good precision although ANN model demonstrated higher prediction accuracy and generalization ability than the regression model. The warp yarn strength and EPI were found to be the two most significant factors influencing fabric strength in warp direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.