A new water level measuring system, using laser rangefinder sensor with phase method as laser water level sensor without cooperative target is presented. The laboratory and field experiments have been done to confirm the application field and measuring accuracy of system. The results show that the measuring accuracy could reach to ±1.5 mm in calm water in case that water turbidity value is greater than 300 NTU. Furthermore, the measuring accuracy can reach to ±3mm for the measuring period taking 5 minute in case of the water surface sloshing. The maximum measuring distance of system could reach to 12m.
The leaf area index (LAI) describes the structure of vegetation and is a key variable for Earth system process modelling and ecohydrological models at regional and global scales. The Medium-Resolution Spectral Imager (MERSI) onboard China's new generation of polar-orbiting meteorological satellite series FengYun-3 (FY-3) can provide continuous and global observations of the land surface. Therefore, it could be a potential data source for global LAI retrieval. In this study, a LAI product was generated from FY-3B/MERSI data using the GLOBCARBON LAI algorithm. Cross-calibration of the FY-3B/MERSI spectral response function with Land Remote-Sensing Satellite (Landsat) Thematic Mapper (TM), allowed to correct the influence of the spectral response function difference on the inversion results. Field measurements of LAI and scale-converted LAI reference images provided by the ImagineS project were used to validate and inter-compare the FY-3B/MERSI LAI product with two widely used medium-resolution LAI products, GLOBMAP LAI product and Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product (MYD15A2 H). The results demonstrate that FY-3B/MERSI LAI has the lowest uncertainty of the three products. The low uncertainty of FY-3B/MERSI LAI in shrub-grass mixed areas (root mean square error, RMSE = 0.07), in part, by the generally underestimated LAI value. For deciduous broadleaf forest, of the three products tested, FY-3B/MERSI LAI is closest to the LAI obtained from the reference image (coefficient of determination, R 2 = 0.70) and yields the lowest uncertainty (RMSE = 0.81). GLOBMAP (R 2 = 0.58), which uses the same algorithm, and surface cover data as FY-3B/MERSI LAI, significantly overestimates the LAI. This overestimation may partly due to the use of a relatively lower clumping index. MYD15A2H shows a relatively weak correlation with the reference data (R 2 = 0.25) and a higher uncertainty (RMSE = 1.45). For mature crops, all three LAI products display systematic underestimation of LAI. FY-3B/MERSI LAI yields the greatest underestimation (about 50%), followed by GLOBMAP (about 35%) and MYD15A2H (about 15%). Our inter-comparison of the three LAI products demonstrates that all have higher correlation for low LAI values. FY-3B/MERSI shows similar capabilities and quality to those of the MODIS sensor with respect to the top of atmosphere observations. However, different atmospheric correction processes may ARTICLE HISTORY
Abstract. Image haze removal using dark channel prior is prone to encountering color distortion in sky and brightness region. To solve the problem, we proposed an improved method based on inverse image and dark channel prior. Firstly, we applied inverse image to estimating a new transmission map. The new transmission map can be used to modify original transmission map in order to avoid color distortion. Next, fast guider filter was applied to refining transmission map. Using the transmission map, we can recover a high quality haze-free image. Experimental results showed that the proposed method is feasible, and visibility can be enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.