Elucidation of the mechanisms of chemo-resistance and implementation of strategies to overcome it will be pivotal to improve the survival for osteosarcoma (OS) patients. We here suggest that sphingosine kinase-1 (SphK1) might be the key factor contributing to chemo-resistance in OS. Our Western-blots and immunohistochemistry results showed that SphK1 is over-expressed in multiple clinical OS tissues. Over-expression of SphK1 in OS cell line U2OS promoted its growth and endorsed its resistance against doxorubicin, while knocking-down of SphK1 by shRNA inhibited U2OS cell growth and increased its sensitivity to doxorubicin. Co-administration phenoxodiol with doxorubicin synergistically inhibited SphK1 activity to trigger cellular ceramide accumulation, and achieved synergistic anti-OS growth effect, accompanied with a significant increased of apoptosis and cytotoxicity. Increased cellular level of ceramide by the co-administration induced the association between Akt and Protein Phosphatase 1 (PP1) to dephosphorylate Akt, and to introduce a constitutively active Akt (CA-Akt) restored Akt activation and diminished cell growth inhibition. Further, phenoxodiol and doxorubicin synergistically activated apoptosis signal-regulating kinase 1(ASK1)/c-jun-NH2-kinase (JNK) signaling, which also contributed to cell growth inhibition. Significantly, the role of SphK1 in OS cell growth and the synergistic anti-OS effect of phenoxodiol and doxorubicin were also seen in a mice OS xenograft model. In conclusion, our data suggest that SphK1 might be a critical oncogene of OS and co-administration phenoxodiol with doxorubicin synergistically inhibited the activity of SphK1 to suppress osteosarcoma cell growth both in vivo and in vitro.
Despite the advances of adjuvant chemotherapy and significant improvement of survival, the prognosis for patients with osteosarcoma is generally poor. The search for more effective anti-osteosarcoma agents is necessary and urgent. Here we report that perifosine induces cell apoptosis and growth inhibition in cultured human osteosarcoma cells. Perifosine blocks Akt/mTOR complex 1 (mTORC1) signaling, while promoting caspase-3, c-Jun N-terminal kinases (JNK), and p53 activation. Further, perifosine inhibits survivin expression probably by disrupting its association with heat shock protein-90 (HSP-90). These signaling changes together were responsible for a marked increase of osteosarcoma cell apoptosis and growth inhibition. Finally, we found that a low dose of perifosine enhanced etoposide- or doxorubicin-induced anti-OS cells activity. The results together suggest that perifosine might be used as a novel and effective anti-osteosarcoma agent.
Recently, protease-activated receptor 2 (PAR2) has been proved to be involved in the inflammatory response including osteoarthritis (OA). In the present study, we found that PAR2 antagonist could remarkably improve the pathological condition of OA rats in vivo. In addition, we also found that PAR2 antagonist could suppress the production of inflammatory factors (TNF-α and Cox-2), decrease the levels of MMP-1 and MMP-13, and restrain the levels of P62 proteins and aggravate the expression of LC3-II both in vivo and in vitro. Besides, in vitro, PAR2 antagonist could increase the proliferation and colony formation of chondrocytes induced with IL-1β. Moreover, PAR2 antagonist could decrease the expression of expressions of p-p38, p-IκBα and p-NF-κB in vitro. However, PAR2 agonist exhibited the opposite effects. Furthermore, SB203580, a p38 MAPK inhibitor, could remarkably promote the proliferation of chondrocytes induced with IL-1β, could alleviate the production of TNF-α and Cox-2, could down-regulate the protein expressions of MMP-1 and MMP-13, and could decrease the expression of P62 and increase the expressions of LC3-II of chondrocytes induced with IL-1β. Importantly, SB203580 could reverse the effects of PAR2 agonist on the functions of chondrocytes induced with IL-1β. Taken together, the present data suggest that down-regulation of PAR2 can ameliorate OA through inducing autophagy via regulation of MAPK/NF-κB signaling pathway in vivo and in vitro, and PAR2 can be considered as a potential candidate to treat OA.
S100 calcium-binding protein B (S100B) is expressed and released by adipocytes, and is positively correlated with body mass index, however, the direct effects of S100B on adipocytes remain unclear. Bone marrow‑derived mesenchymal stem cells have the capacity to differentiate into osteoblasts and adipocytes, which is important for bone metabolism. The current study aimed to determine the effect of S100B on adipogenesis and osteogenesis. The mouse embryo cell line C3H/10T1/2 was used to build cell models with varying levels of S100B protein expression. Western blot analysis was performed to assess the expression of various marker proteins. Oil red O staining and alizarin red S staining were used to detect adipogenesis and osteogenesis, respectively. S100B overexpression was associated with a significant increase in oil red O staining and a significant reduction in alizarin red S staining. Runt‑related transcription factor‑2 and bone morphogenetic protein 2 expression levels were significantly increased in the S100B underexpression group, however not in the S100B overexpression group. By contrast, the expression levels of the adipogenesis markers peroxisome proliferator‑activated receptor γ and CCAAT‑enhancer‑binding protein α was significantly increased in the S100B overexpression group, however not in the S100B underexpression group. Osteogenesis stimulation increased extracellular signal‑regulated kinase (ERK) phosphorylation, and adipogenesis stimulation increased c‑Jun N‑terminal kinase (JNK) phosphorylation. The results suggest that S100B inhibits osteogenesis, however stimulates adipogenesis. The ERK pathway is involved in the regulation of osteogenesis, whereas the JNK pathway is involved in the regulation of adipogenesis.
Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Disruption of bone homeostasis due to excessive osteoclastogenesis or reduced osteogenesis results in various disorders, such as postmenopausal osteoporosis. Receptor activator of NF-κB ligand (RANKL) stimulation of the NF-κB signaling pathway is essential in osteoclastogenesis. The aim of the present study was to investigate the novel effects of carnosol, an active compound found in Rosmarinus officinalis , on RANKL-induced osteoclastogenesis both in vitro and in vivo . TRAP staining showed that carnosol significantly inhibited osteoclasts differentiation of bone marrow monocytes and RAW264.7 cells. Western blot results showed that the protein expression levels of osteoclastogenesis-associated genes, including cathepsin K, tartrate-resistant acid phosphatase and MMP-9, were markedly inhibited by carnosol, which may have suppressed osteoclast function. Furthermore, western blot and immunofluorescent staining results revealed that carnosol markedly suppressed the phosphorylation of p65 induced by RANKL and blocked its nuclear translocation, indicating the suppression of NF-κB signaling pathway. H&E staining and micro-CT results showed that in vivo treatment with carnosol significantly attenuated ovariectomy-induced bone loss in mice. In conclusion, the present study indicated that carnosol may suppress osteoclastogenesis both in vivo and in vitro by inhibiting the activation of the NF-κB signaling pathway. Carnosol may therefore be a potential novel therapeutic candidate for the clinical treatment of osteoclast-related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.