Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.
To examine the influence of epidermal growth factor (EGF) and its receptor (EGFR) on axial ocular elongation, we intraocularly injected an EGF antibody and an EGFR antibody into young guinea pigs with lens‐induced axial elongation (myopization). Mean axial elongation was reduced in the eyes injected with the EGF/EGFR‐antibody compared with the contralateral control eyes injected with PBS (phosphate‐buffered solution) (0.43 ± 0.13 mm vs 0.53 ± 0.13 mm; P < .001). The intereye difference in axial length increased (P = .005) as the doses of the EGF antibody and EGFR antibody increased. As a corollary, the thickness of the retina at the posterior pole was dose‐dependently increased in the injected eyes compared to the contralateral control eyes. Immunohistochemical staining for EGF and the relative mRNA expression of EGF and EGFR were the highest in eyes not injected with the EGF antibody or EGFR antibody and decreased (P < .05) as the dose of EGF antibody or EGFR antibody increased. In an in vitro study, EGF had a stimulating effect and the EGF antibody had an inhibitory effect on the proliferation and migration of RPE cells. The findings showed that the intravitreal application of an EGF antibody and EGFR antibody is associated with a dose‐dependent reduction in lens‐induced axial elongation in young guinea pigs. The EGFR family may play a role in axial elongation of the eye and in the development of myopia.
To develop biocompatible composite microspheres for novel hemostatic use, we designed and prepared a novel biomaterial, composite microspheres consisting of carboxymethyl chitosan, sodium alginate, and collagen (CSCM). The ultra-structure of CSCM was investigated by scanning electron microscopy assay. In hemostatic function experiment, it was found that CSCM could facilitate platelet adherence, platelet aggregation, and platelet activation in vitro. Besides, the maximum swelling of CSCM submerged in PBS for 50 min was over 300% of that exhibited by commercial hemostatic compound microporous polysaccharide haemostatic powder (CMPHP). In addition, CSCM exhibited good biodegradability and non-cytotoxicity. These results demonstrated that CSCM may be useful in platelet plug formation, and this study would provide important information for further research on hemostasis experiment in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.