The pacific white shrimp, Litopenaeus vannamei, with the largest shrimp industry production in the world, is currently threatened by a severe disease, white feces syndrome (WFS), which cause devastating losses globally, while its causal agents remain largely unknown. Herein, compared to the Control shrimp by metagenomic analysis, we firstly investigated that the altered functions of intestinal microbial community in WFS shrimp were the enrichment of bacterial chemotaxis and flagellar assembly pathways, hinting at a potential role of pathogenic bacteria for growth and development, which might be related to WFS occurrence. Single-molecule real-time (SMRT) sequencing was to further identify the gene structure and gene regulation for more clues in WFS aetiology. Totally 50,049 high quality transcripts were obtained, capturing 39,995 previously mapped and 10,054 newly detected transcripts, which were annotated to 30,554 genes. A total of 158 differentially expressed genes (DEGs) were characterized in WFS shrimp. These DEGs were strongly associated with various immune related genes that regulated the expression of multiple antimicrobial peptides (e.g., antilipopolysaccharide factors, penaeidins, and crustin), which were further experimentally validated using quantitative PCR on transcript level. Collectively, multigene biomarkers were identified to be closely associated with WFS, especially those functional alterations in microbial community and the upregulated immune related gene with antibacterial activities. Our finding not only inspired our cogitation on WFS aetiology from both microbial and host immune response perspectives with combined metagenomic and full-length transcriptome sequencing, but also provided valuable information for enhancing shrimp aquaculture.
Sediment nitrogen and sulfur cycles are essential biogeochemical processes that regulate the microbial communities of environmental ecosystems, which have closely linked to environment ecological health. However, their functional couplings in anthropogenic aquaculture sedimentary ecosystems remain poorly understood. Here, we explored the sediment functional genes in shrimp culture pond ecosystems (SCPEs) at different culture stages using the GeoChip gene array approach with 16S amplicon sequencing. Dissimilarity analysis showed that the compositions of both functional genes and bacterial communities differed at different phases of shrimp culture with the appearance of temporal distance decay (p < 0.05). During shrimp culture, the abundances of nitrite and sulfite reduction functional genes decreased (p < 0.05), while those of nitrate and sulfate reduction genes were enriched (p < 0.05) in sediments, implying the enrichment of nitrites and sulfites from microbial metabolism. Meanwhile, nitrogen and sulfur reduction genes were found to be linked with carbon degradation and phosphorous metabolism (p < 0.05). The influence pathways of nutrients were demonstrated by structural equation modeling through environmental factors and the bacterial community on the nitrogen and sulfur reduction functions, indicating that the bacterial community response to environmental factors was facilitated by nutrients, and led to the shifts of functional genes (p < 0.05). These results indicate that sediment nitrogen and sulfur reduction functions in SCPEs were coupled, which are interconnected with the SCPEs bacterial community. Our findings will be helpful for understanding biogeochemical cycles in anthropogenic aquaculture ecosystems and promoting sustainable management of sediment environments through the framework of an ecological perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.