As low-cost electrocatalysts for oxygen reduction reaction applied to fuel cells and metal-air batteries, atomic-dispersed transition metal-nitrogen-carbon materials are emerging, but the genuine mechanism thereof is still arguable. Herein, by rational design and synthesis of dual-metal atomically dispersed Fe,Mn/N-C catalyst as model object, we unravel that the O2 reduction preferentially takes place on FeIII in the FeN4 /C system with intermediate spin state which possesses one eg electron (t2g4eg1) readily penetrating the antibonding π-orbital of oxygen. Both magnetic measurements and theoretical calculation reveal that the adjacent atomically dispersed Mn-N moieties can effectively activate the FeIII sites by both spin-state transition and electronic modulation, rendering the excellent ORR performances of Fe,Mn/N-C in both alkaline and acidic media (halfwave positionals are 0.928 V in 0.1 M KOH, and 0.804 V in 0.1 M HClO4), and good durability, which outperforms and has almost the same activity of commercial Pt/C, respectively. In addition, it presents a superior power density of 160.8 mW cm−2 and long-term durability in reversible zinc–air batteries. The work brings new insight into the oxygen reduction reaction process on the metal-nitrogen-carbon active sites, undoubtedly leading the exploration towards high effective low-cost non-precious catalysts.
Ac ompetitive complexation strategy has been developed to construct an ovel electrocatalyst with Zn-Co atomic pairs coordinated on Nd oped carbon support (Zn/ CoN-C). Sucha rchitecture offers enhanced binding ability of O 2 ,s ignificantly elongates the O À Ol ength (from 1.23 to 1.42 ), and thus facilitates the cleavage of O À Ob ond, showing at heoretical overpotential of 0.335 Vd uring ORR process.A saresult, the Zn/CoN-C catalyst exhibits outstanding ORR performance in both alkaline and acid conditions with ah alf-wave potential of 0.861 and 0.796 Vr espectively. The in situ XANES analysis suggests Co as the active center during the ORR. The assembled zinc-air battery with Zn/CoN-Ca sc athode catalyst presents am aximum power density of 230 mW cm À2 along with excellent operation durability.T he excellent catalytic activity in acid is also verified by H 2 /O 2 fuel cell tests (peak power density of 705 mW cm À2 ).
We report a general approach to NiAu alloy nanoparticles (NPs) by co-reduction of Ni(acac)2 (acac = acetylacetonate) and HAuCl4·3H2O at 220 °C in the presence of oleylamine and oleic acid. Subject to potential cycling between 0.6 and 1.0 V (vs reversible hydrogen electrode) in 0.5 M H2SO4, the NiAu NPs are transformed into core/shell NiAu/Au NPs that show much enhanced catalysis for hydrogen evolution reaction (HER) with Pt-like activity and much robust durability. The first-principles calculations suggest that the high activity arises from the formation of Au sites with low coordination numbers around the shell. Our synthesis is not limited to NiAu but can be extended to FeAu and CoAu as well, providing a general approach to MAu/Au NPs as a class of new catalyst superior to Pt for water splitting and hydrogen generation.
Electrocatalytically active platinum (Pt) nanoparticles on a carbon nanotube (CNT) with enhanced nucleation and stability have been demonstrated through introduction of electron-conducting polyaniline (PANI) to bridge the Pt nanoparticles and CNT walls with the presence of platinum-nitride (Pt-N) bonding and π-π bonding. The Pt colloids were prepared through ethanol reduction under the protection of aniline, the CNT was dispersed well with the existence of aniline in the solution, and aniline was polymerized in the presence of a protonic acid (HCl) and an oxidant (NH(4)S(2)O(8)). The synthesized PANI is found to wrap around the CNT as a result of π-π bonding, and highly dispersed Pt nanoparticles are loaded onto the CNT with narrowly distributed particle sizes ranging from 2.0 to 4.0 nm due to the polymer stabilization and existence of Pt-N bonding. The Pt-PANI/CNT catalysts are electroactive and exhibit excellent electrochemical stability and therefore promise potential applications in proton exchange membrane fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.