The world is experiencing a rapid loss in the biodiversity of pollinator insects. Habitat segmentation caused by infrastructures is one of the contributing factors. To improve the habitat connectivity of pollinator insects, it is proposed in this study to build green corridors for pollinators over linear infrastructures such as highways. In the context of suburban areas of a large city, this study examines differences in air parameters between natural environments and a roadside environment based on monitored and estimated data. Influences of different green corridor designs on floral scent dispersion are also investigated using computational fluid dynamics (CFD) modeling and simulation. It is found that, if flower plants are installed on highway overpasses, the floral scents would be better preserved as compared with those in a natural environment due to the lower concentration of oxidative radicals in the air over highways. The stronger floral scents and their wider dispersion may help attract pollinators. Conversely, highway air contains a variety of volatine organic components (VOCs) that are likely traced to highway operations and pavements. Hence, the overall profile of VOCs in a highway environment differs from that in a natural environment. Results from CFD modeling and simulation suggest that the use of green corridors planted with flowers on the highway overpass can greatly improve the connectivity of floral scents. Hence, with proper engineering design and right combination of plant species, green corridors built on highway overpasses have the potential to facilitate pollinators to cross the road, thereby improving their habitat connectivity and resilience against declining biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.