Articular cartilage repair after injury is a great challenge worldwide due to its nerveless and avascular features. Tissue engineering is proposed as a promising alternative for cartilage regeneration. In this study, an adenoviral vector carrying the transforming growth factor‐β3 (TGF‐β3) gene was constructed and introduced into dedifferentiated chondrocytes, which were then cocultured with ATDC5 cells in an alginate hydrogel system. The results showed that the experimental groups exhibited better cell viability and higher levels of cartilage‐related genes than the control groups. In this coculture system, the chondrogenic differentiation of ATDC5 cells was effectively induced by TGF‐β3 and other latent cytokines that were produced by the transfected chondrocytes. Thus, this method can avoid the degradation of exogenous TGF‐β3, and it can protect ATDC5 cells during virus transfection to maintain cell viability and chondrogenic differentiation capability. Taken together, this study provides fresh insights for applying this genetically manipulated coculture system to cartilage repair in the future.
Critical size bone defects are one of the most serious complications in orthopedics due to the lack of effective osteogenesis treatment. We fabricated carboxymethyl cellulose with phenol moieties (CMC-ph) microcapsules loaded with gene-modified rat bone mesenchymal stem cells (rBMSCs) that secrete hBMP2 following doxycycline (DOX) induction. The results showed that the morphology of microcapsules was spherical, and their diameters have equally distributed in the range of 100–150 μm; the viability of rBMSCs was unchanged over time. Through real-time PCR and Western blot analyses, the rBMSCs in microcapsules were found to secrete hBMP2 and to have upregulated mRNA and protein expression of osteogenesis-related genes in vitro and in vivo. Furthermore, the in vivo results suggested that the group with the middle concentration of cells expressed the highest amount of osteogenic protein over time. In this study, we showed that gene-modified rBMSCs in CMC-ph microcapsules had good morphology and viability. The BMP2–BMSCs/CMC-Ph microcapsule system could upregulate osteogenic mRNA and protein in vitro and in vivo. Further analysis demonstrated that the medium concentration of cells had a suitable density for transplantation in nude mice. Therefore, BMP2–BMSCs/CMC-Ph microcapsule constructs have potential for bone regeneration in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.