Abstract-The recent concept of beamspace multiple input multiple output (MIMO) can significantly reduce the number of required radio-frequency (RF) chains in millimeter-wave (mmWave) massive MIMO systems without obvious performance loss. However, the fundamental limit of existing beamspace MIMO is that, the number of supported users cannot be larger than the number of RF chains at the same time-frequency resources. To break this fundamental limit, in this paper we propose a new spectrum and energy efficient mmWave transmission scheme that integrates the concept of non-orthogonal multiple access (NOMA) with beamspace MIMO, i.e., beamspace MIMO-NOMA. By using NOMA in beamspace MIMO systems, the number of supported users can be larger than the number of RF chains at the same time-frequency resources. Particularly, the achievable sum rate of the proposed beamspace MIMO-NOMA in a typical mmWave channel model is analyzed, which shows an obvious performance gain compared with the existing beamspace MIMO. Then, a precoding scheme based on the principle of zeroforcing (ZF) is designed to reduce the inter-beam interferences in the beamspace MIMO-NOMA system. Furthermore, to maximize the achievable sum rate, a dynamic power allocation is proposed by solving the joint power optimization problem, which not only includes the intra-beam power optimization, but also considers the inter-beam power optimization. Finally, an iterative optimization algorithm with low complexity is developed to realize the dynamic power allocation. Simulation results show that the proposed beamspace MIMO-NOMA can achieve higher spectrum and energy efficiency compared with existing beamspace MIMO.
A new state-of-the-art multi-cell minimum mean square error (M-MMSE) scheme is proposed for massive multiple-input-multiple-output (MIMO) networks, which includes an uplink MMSE detector and a downlink MMSE precoder. Contrary to conventional single-cell schemes that suppress interference using only channel estimates for intra-cell users, our scheme shows the optimal way to suppress both intra-cell and inter-cell interference instantaneously by fully utilizing the available pilot resources. Specifically, let K and B denote the number of users per cell and the number of orthogonal pilot sequences in the network, respectively, where β = B/K is the pilot reuse factor. Our scheme utilizes all B channel directions that can be estimated locally at each base station, to actively suppress both intra-cell and inter-cell interference. Our scheme is practical and general, since power control, imperfect channel estimation, and arbitrary pilot allocation are all accounted for. Simulations show that significant spectral efficiency (SE) gains are obtained over the conventional single-cell MMSE scheme and the multi-cell zero-forcing (ZF) scheme. Furthermore, large-scale approximations of the uplink and downlink signal-to-interference-and-noise ratios (SINRs) are derived, which are tight in the large-system limit. These approximations are easy to compute and very accurate even for small system dimensions. Using these SINR approximations, a low-complexity power control algorithm is further proposed to maximize the sum SE.
Traditional macro-cell networks are experiencing an upsurge of data traffic, and small-cells are deployed to help offload the traffic from macro-cells. Given the massive deployment of small-cells in a macro-cell, the aggregate power consumption of small-cells (though being low individually) can be larger than that of the macrocell. Compared to the macro-cell base station (MBS) whose power consumption increases significantly with its traffic load, the power consumption of a small-cell base station (SBS) is relatively flat and independent of its load. To reduce the total power consumption of the heterogeneous networks (HetNets), we dynamically change the operating states (on and off) of the SBSs, while keeping the MBS on to avoid any service failure outside active small-cells. First, we consider that the wireless users are uniformly distributed in the network, and propose an optimal location-based operation scheme by gradually turning off the SBSs closer to the MBS. We then extend the operation problem to a more general case where users are non-uniformly distributed in the network. Although this problem is NP-hard, we propose a joint location and user density based operation scheme to achieve near-optimum (with less than 1% performance loss in our simulations) in polynomial time.
In this paper, we present a comprehensive study of the monotonicity and log-concavity of the generalized Marcum and Nuttall Q−functions. More precisely, a simple probabilistic method is firstly given to prove the monotonicity of these two functions. Then, the log-concavity of the generalized Marcum Q−function and its deformations is established with respect to each of the three parameters. Since the Nuttall Q−function has similar probabilistic interpretations as the generalized Marcum Q−function, we deduce the log-concavity of the Nuttall Q−function. By exploiting the log-concavity of these two functions, we propose new tight lower and upper bounds for the generalized Marcum and Nuttall Q−functions. Our proposed bounds are much tighter than the existing bounds in the literature in most of the cases. The relative errors of our proposed bounds converge to 0 as b → ∞. The numerical results show that the absolute relative errors of the proposed bounds are less than 5% in most of the cases. The proposed bounds can be effectively applied to the outage probability analysis of interference-limited systems such as cognitive radio and wireless sensor network, in the study of error performance of various wireless communication systems operating over fading channels and extracting the log-likelihood ratio for differential phase-shift keying (DPSK) signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.