To address the poor searchability, population diversity, and slow convergence speed of the differential evolution (DE) algorithm in solving capacitated vehicle routing problems (CVRP), a new multistrategy-based differential evolution algorithm with the saving mileage algorithm, sequential encoding, and gravitational search algorithm, namely SEGDE, is proposed to solve CVRP in this paper. Firstly, an optimization model of CVRP with the shortest total vehicle routing is established. Then, the saving mileage algorithm is employed to initialize the population of the DE to improve the initial solution quality and the search efficiency. The sequential encoding approach is used to adjust the differential mutation strategy to legalize the current solution and ensure its effectiveness. Finally, the gravitational search algorithm is applied to calculate the gravitational relationship between points to effectively adjust the evolutionary search direction and further improve the search efficiency. Four CVRPs are selected to verify the effectiveness of the proposed SEGDE algorithm. The experimental results show that the proposed SEGDE algorithm can effectively solve the CVRPs and obtain the ideal vehicle routing. It adopts better search speed, global optimization ability, routing length, and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.