Polymer blending is a promising method to overcome stability obstacles induced by physical aging and swelling of implant scaffolds prepared from amorphous polymers in biomedical application, since it will not bring potential toxicity compared with chemical modification. However, the mechanism of polymer blending still remains unclearly explained in existing studies that fail to provide theoretical references in material R&D processes for stability improvement of the scaffold during ethylene oxide (EtO) sterilization, long-term storage, and clinical application. In this study, amphiphilic poly(ethylene glycol)-co-poly(lactic acid) (PELA) was blended with amorphous poly(lactic-co-glycolic acid) (PLGA) because of its good miscibility so as to adjust the glass transition temperature (Tg) and hydrophilicity of electrospun PLGA membranes. By characterizing the morphological stability and mechanical performance, the chain movement and the glass transition behavior of the polymer during the physical aging and swelling process were studied. This study revealed the modification mechanism of polymer blending at the molecular chain level, which will contribute to stability improvement and performance adjustment of implant scaffolds in biomedical application.
Electrospun fibrous membranes loaded with chemotherapy drugs have been broadly studied, many of which have had promising data demonstrating therapeutic effects on cancer cell inhibition, tumor size reduction, the life extension of tumor-bearing animals, and more. Nevertheless, their drug release profiles are difficult to predict since their degradation pattern varies with crystalline polymers. In addition, there is room for improving their release performances, optimizing the release patterns, and achieving better therapeutic outcomes. In this review, the key factors affecting electrospun membrane drug release profiles have been systematically reviewed. Case studies of the release profiles of typical chemotherapy drugs are carried out to determine the preferred polymer choices and techniques to achieve the expected prolonged or enhanced release profiles. The therapeutic effects of these electrospun, chemo-drug-loaded membranes are also discussed. This review aims to assist in the design of future drug-loaded electrospun materials to achieve preferred release profiles with enhanced therapeutic efficacies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.