Interleukin (IL)-33 is a novel IL-1 family member, and its administration has been associated with promotion of T helper type-2 (Th2) cell activity and cytokines, particularly IL-4 and IL-5 in vivo. Recently, IL-33 was shown to increase CD4 + Foxp3 + regulatory T cells (Tregs) and to suppress levels of the Th1-type cytokine IFN-γ in allogeneic heart transplantation in mice. Therefore, we hypothesized that IL-33 and leflunomide (Lef) could prolong graft survival in the concordant mouse-to-rat heart transplantation model. In this model, xenografts undergo acute humoral xenograft rejection (AHXR) typically on day 3 or cell-mediated rejection approximately on day 7 if AHXR is inhibited by Lef treatment. Recipients were treated with Lef (n = 6), IL-33 (n = 6), IL-33 combined with Lef (n = 6), or left untreated (n = 6) for survival studies. Heart grafts were monitored until they stopped beating. Mouse heterotopic grafts were performed, and recipients were sacrificed on days 2 and 7 for histological and flow cytometric analyses. The combination of IL-33 and Lef significantly prolonged the grafts from 17.3 ± 2.3 to 2.8 ± 0.4 days, compared to untreated controls. IL-33 administration with Lef, while facilitating Th2-associated cytokines (IL-4 on day 2 but not day 7), also decreased IFN-γ on day 2 and day 7, compared with Lef treatment only. Furthermore, IL-33 with Lef administration caused an expansion of suppressive CD4 + Foxp3 + Tregs in rats. The IL-33 and Lef combination therapy resulted in significantly prolonged graft survival, associated with markedly decreased Th1 cells and increased IL-10 levels. In addition, the combination therapy significantly decreased the percentage of CD-45 + B cells on days 2 and 7, compared with monotherapy. These findings reveal a new immunoregulatory property of IL-33. Specifically, it facilitates regulatory cells, particularly functional CD4 + Foxp3 + Tregs that underlie IL-33-mediated cardiac xenograft survival. Moreover, it can decrease Th1 cells and cytokine expression of Th1 T cells in xenograft recipients, for example IFN-γ.
Purpose. Liver metastasis remains the leading cause of cancer-related mortality in colorectal cancer. The mechanism of occurrence and development of liver metastasis from colorectal cancer is unclear. Methods. The primary tumor tissues and blood samples of 8 patients with liver metastasis of colorectal cancer were collected, followed by nucleic acid extraction and library construction. Whole-exome sequencing was performed to detect the genomic variations. Bioinformatics was used to comprehensively analyze the sequencing data of these samples, including the differences of tumor mutation burden, the characteristics of gene mutations, and signaling pathways. Results. The results showed that the top three genes with the highest mutation frequency were TP53, APC, and KRAS. Tumor mutation burden of this study, with a median of 8.34 mutations per MB, was significantly different with The Cancer Genome Atlas databases. Analysis of molecular function and signaling pathways showed that the mutated genes could be classified into five major categories and 39 signaling pathways, involving in Wnt, angiogenesis, P53, Alzheimer disease-presenilin pathway, notch, and cadherin signaling pathway. Conclusions. In conclusion, we identified the extensive landscape of altered genes and pathways in colorectal cancer liver metastasis, which will be useful to design clinical therapy for personalized medicine.
TIPE2, also known as TNFAIP8L2, a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, is known as an inhibitor in inflammation and cancer, and its overexpression induces cell death. We examined the role of TIPE2 with respect to adjuvant arthritis (AA)-associated pathogenesis by analyzing the TIPE2 regulation of death receptor (DR5)-mediated apoptosis in vitro. The results showed that TIPE2 was detected in normal fibroblast-like synoviocytes (FLSs), but scarcely observed in AA-FLSs. Therefore, recombinant MIGR1/TIPE2+/+ and control MIGR1 lentivirus vectors were transfected to AA-FLSs, which were denoted as TIPE2+/+-FLSs and MIGR1-FLSs, respectively. Our results showed that TIPE2+/+-FLSs were highly susceptible to ZF1-mediated apoptosis, and ZF1 was our own purification of an anti-DR5 single chain variable fragment antibody. Under the presence of TIPE2, the expression of DR5 was significantly increased compared with that of the MIGR1-FLS group. In contrast, the level of phosphorylated nuclear factor-kappa B (pNF-κB) was lower in the TIPE2+/+-FLS group treated with ZF1, whereas the activity of caspase was higher. Moreover, the rate of apoptosis in the TIPE2+/+-FLS group, which was pretreated with caspase inhibitor Z-VAD-FMK, was significantly decreased. In contrast, the apoptosis occurrence in the MIGR1-FLS group increased significantly with the pretreatment of the NF-κB inhibitor Bay. These results indicated that TIPE2 increased the apoptosis of AA-FLSs by enhancing DR5 expression levels, thereby promoting the activation of caspase and inhibiting the activation of NF-κB in AA-FLSs. TIPE2 might potentially act as a therapeutic target for rheumatoid arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.