Submersed superhydrophobic surfaces exhibit great potential for reducing flow resistance in microchannels and drag of submersed bodies. However, the low stability of liquid−air interfaces on those surfaces limits the scope of their application, especially under high liquid pressure. In this paper, we first investigate the wetting states on submersed hydrophobic surfaces with one-level structure under hydrostatic pressure. Different equilibrium states based on free-energy minimization are formulated, and their stabilities are analyzed as well. Then, by comparison with the existing numerical and experimental studies, we confirm that a new metastable state, which happens after depinning of the three-phase contact line (TCL), exists. Finally, we show that a strategy of using hierarchical structures can strengthen the TCL pinning of the liquid−air interface in the metastable state. Therefore, the hierarchical structure on submersed surfaces is important to further improve the stability of superhydrophobicity under high liquid pressure.
Particle Image Velocimetry (PIV), pressure and noise measurements are used to study the effect of modifications to tongue and impeller geometries on the flow structure and resulting noise in a centrifugal pump. It is demonstrated that the primary sources of noise are associated with interactions of the non-uniform outflux from the impeller (jet/wake phenomenon) with the tongue. Consequently, significant reduction of noise is achieved by increasing the gap between the tongue and the impeller up to about 20% of the impeller radius. Further increase in the gap affects the performance adversely with minimal impact on the noise level. When the gap is narrow, the primary sources of noise are impingement of the wake on the tip of the tongue, and tongue oscillations when the pressure difference across it is high. At about 20% gap, the entire wake and its associated vorticity trains miss the tongue, and the only (quite weak) effect of nonuniform outflux is the impingement of the jet on the tongue. An attempt is also made to reduce the non-uniformity in outflux from the impeller by inserting short vanes between the blades. They cause reduction in the size of the original wakes, but generate an additional jet/wake phenomenon of their own. LIST OF SYMBOLS8 2 -Impeller width p -pressure Q -overall flow rate Q 0 -design flow rate ( 200 gpm) r -radial distance from the center of the impeller rT -impeller radius rv -outer radius of the volute Both wakes are weak to a level that their impacts on local pressure fluctuations and noise are insignificant. The only remaining major contributor to noise is tongue oscillations. This effect is shown to be dependent on the stiffness of the tongue.
Maps of pressure distributions computed using PDV data, combined with noise and local pressure measurements, are used for identifying primary sources of noise in a centrifugal pump. In the vicinity of the impeller pressure minima occur around the blade and near a vortex train generated as a result of non-uniform outflux from the impeller. The pressure everywhere also varies depending on the orientation of the impeller relative to the tongue. Noise peaks are generated when the pressure difference across the tongue is maximum, probably due to tongue oscillations, and when the wake impinges on the tip of the tongue.
The mass flux at the surface of a drop in an immiscible host liquid is dictated by the composition of the drop surface. In a binary system, this composition is essentially constant in time and equals the solubility of the drop constituent in the host liquid. This situation has been treated in a classic study by Epstein and Plesset (J. Chem. Phys., vol. 18, 1950, pp. 1505–1509). The situation is very different for ternary and higher-order systems in which, due to the mutual interaction of the drop constituents, their concentration at the drop surface markedly differs from the respective solubilities and depends on time. This paper presents a thermodynamically consistent analysis of this situation, for both growing and dissolving drops, with and without an initial concentration of the drop constituents in the host liquid. In some cases the results, which have important implications e.g. for solvent extraction processes in the chemical and environmental remediation industries, show major deviations from the predictions of approximations in current use, including simple extensions of the Epstein–Plesset theory.
Velocity distributions determined by using Particle Displacement Velocimetry are used for computing the pressure field within the volute of a centrifugal pump. It is shown that blade-tongue interactions and nonuniform outflux from the impeller are primary contributors to local pressure fluctuations and far field noise. Consequently, a slight increase in the space between the impeller and the tongue causes significant changes in flow structure and reductions in the resulting noise. The impact is significant as long as the tongue-impeller gap is less than 20 percent of the impeller radius. It is also shown that the vorticity distributions, particularly the large vortex trains associated with the jet/wake phenomenon, dominate variations in the total pressure. Thus, it is unlikely that a potential flow model can provide any realistic description of the flow structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.