A fully automatic method is presented to detect abnormalities in frontal chest radiographs which are aggregated into an overall abnormality score. The method is aimed at finding abnormal signs of a diffuse textural nature, such as they are encountered in mass chest screening against tuberculosis (TB). The scheme starts with automatic segmentation of the lung fields, using active shape models. The segmentation is used to subdivide the lung fields into overlapping regions of various sizes. Texture features are extracted from each region, using the moments of responses to a multiscale filter bank. Additional "difference features" are obtained by subtracting feature vectors from corresponding regions in the left and right lung fields. A separate training set is constructed for each region. All regions are classified by voting among the k nearest neighbors, with leave-one-out. Next, the classification results of each region are combined, using a weighted multiplier in which regions with higher classification reliability weigh more heavily. This produces an abnormality score for each image. The method is evaluated on two databases. The first database was collected from a TB mass chest screening program, from which 147 images with textural abnormalities and 241 normal images were selected. Although this database contains many subtle abnormalities, the classification has a sensitivity of 0.86 at a specificity of 0.50 and an area under the receiver operating characteristic (ROC) curve of 0.820. The second database consist of 100 normal images and 100 abnormal images with interstitial disease. For this database, the results were a sensitivity of 0.97 at a specificity of 0.90 and an area under the ROC curve of 0.986.
An automated computerized scheme has been developed for the detection and characterization of diffuse lung diseases on high-resolution computed tomography (HRCT) images. Our database consisted of 315 HRCT images selected from 105 patients, which included normal and abnormal slices related to six different patterns, i.e., ground-glass opacities, reticular and linear opacities, nodular opacities, honeycombing, emphysematous change, and consolidation. The areas that included specific diffuse patterns in 315 HRCT images were marked by three radiologists independently on the CRT monitor in the same manner as they commonly describe in their radiologic reports. The areas with a specific pattern, which three radiologists marked independently and consistently as the same patterns, were used as "gold standard" for specific abnormal opacities in this study. The lungs were first segmented from the background in each slice by use of a morphological filter and a thresholding technique, and then divided into many contiguous regions of interest (ROIs) with a 32x32 matrix. Six physical measures which were determined in each ROI included the mean and the standard deviation of the CT value, air density components, nodular components, line components, and multilocular components. Artificial neural networks (ANNs) were employed for distinguishing between seven different patterns which included normals and six patterns associated with diffuse lung disease. The sensitivity of this computerized method for a detection of the six abnormal patterns in each ROI was 99.2% (122/123) for ground-glass opacities, 100% (15/15) for reticular and linear opacities, 88.0% (132/150) for nodular opacities, 100% (98/98) for honeycombing, 95.8% (369/385) for emphysematous change, and 100% (43/43) for consolidation. The specificity in detecting a normal ROI was 88.1% (940/1067). This computerized method may be useful in assisting radiologists in their assessment of diffuse lung disease in HRCT images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.