Administration of thyroid hormone has been shown to accelerate the early postnatal development of the rat parotid gland, but these studies have dwelt almost entirely on biochemical changes. The objective of this study was to describe the effects of exogenous thyroid hormone on morphologic aspects of the developing parotid gland, in particular the transient appearance of scattered mucous cells in this otherwise serous gland. Pups were given a daily subcutaneous injection of thyroxine (T(4)) of 0.1, 0.5, or 5.0 microg/g body weight, vehicle only (injection control), or no injection (normal control) beginning at 4 days, and killed for the collection of blood and parotid glands at intervals through 15 days. The serum was analyzed for T(4) and the glands were examined by light and electron microscopy. The results indicated that both serum T(4) and the pace of gland development were proportional to the dose of T(4). In particular, T(4) accelerated decreases in acinar size and gland area occupied by stroma and translocation of a subset of cells with small secretory granules, deeply stained with periodic acid-Schiff, from acini to intercalated ducts. However, the chronology of mucous cell disappearance was indifferent to treatment. In addition, signs of toxicity, including slower gain in body weight and greatly increased apoptosis and vacuoles in the glands, occurred with the higher doses of T(4).
The effect of triiodo-L-thyronine (T 3 ) and propylthiouracil (PTU) on the initiation of epidermal growth factor (EGF) expression in the sublingual glands (SLGs) of postnatal mice was investigated by indirect enzyme-labeled and immunogold antibody methods for light and electron microscopy, respectively. In normal males, EGF immunoreactivity first appeared in a few scattered granular cells of striated ducts (SDs) at 5 weeks of age, and the immunoreactive cells had increased in number at 6 weeks of age. No EGF expression was observed in the glands of females at any ages examined. When T 3 (1 mg/kg body weight) was given to males every other day for 2 weeks before examination, EGF expression began earlier; the immunoreactive granular cells were first detected at 4 weeks of age, and at later ages they were markedly increased in number compared to those of normal males. Moreover, T 3 was capable of inducing EGF in the female glands. After T 3 was administered to females in the same manner as in males, a few immunoreactive cells were first detected at 5 weeks of age, and increased numbers were detected at later ages. By contrast, when PTU (1 mg/kg body weight) was given to male mice every other day for 2 weeks before examination, the EGF-immunoreactive cells were markedly decreased in number compared to those of normal males of the same age. Electron microscopy revealed that many SD cells contained secretory granules, and that these cells constituted the granular striated tubule (GST) in a portion of SDs, but they were undetectable by light microscopy, because their secretory granules were minimal in size and few in number. Gold-labeling of EGF was confined to the secretory granules of scattered granular cells, whose secretory granules were far larger in size and more abundant than those of the GST cells. These results suggest that thyroid hormone is essential to differentiation of the cellular phenotype of GST precursor cells into typical granular cells (detectable by light microscopy) that express EGF in the mouse SLG, showing a close resemblance to the submandibular granular convoluted tubule cells.
Abstract:The present study was conducted to clarify the histological changes in the a cinar and myoepithelial cells of the rat submandibular gland after ligation of the main excretory duct for one week, and also the regenerative movements of these cells after ligation release . Tissue specimens were subjected to immunostaining and TUNEL staining , and examined by light microscopy. Some of the samples were prepared for transmission electron microscopy by a routine method . Duct-like structures covered with myoepithelial cells were not detected in normal rats, but were frequently observed after ligation of th e main excretory duct. A few TUNEL-positive acinar cells, apparently apoptotic , were observed by light microscopy , but could not be identified by electron microscopy. Therefore , we consider that only a limited number of cells underwent apoptosis, if any. Almost normal acinar cells were detected throughout th e entire submandibular gland 4 weeks after the loosening of the ligature. These findings suggest that duct -like structures may become acini, resulting in recovery.
The mature rat parotid gland shows hardly any cell bodies of myoepithelial cells around the acini, only a few cell processes being visible. However, in the early postnatal period, the rat parotid gland shows many myoepithelial cell bodies around the acini, including the intercalated ducts. In order to clarify the reason for the disappearance of myoepithelial cells from the area around the acinus during postnatal development, changes in the number and distribution of myoepithelial cells in the rat parotid gland were examined histochemically and chronologically, with particular reference to cell proliferation and cell death. From day 7 to day 14, many myoepithelial cells showing a positive reaction with anti-actin antiserum were found around the acini and intercalated ducts, but thereafter the number of such cells decreased gradually, particularly around the acini, and had almost disappeared after day 35. BrdU/PCNA-positive myoepithelial cells surrounding the acini were easily detected on day 14, but disappeared by day 21, whereas BrdU/PCNA-positive acinar cells remained numerous even after day 21. TUNEL/ISEL staining showed no positive myoepithelial cells throughout the observation period. Transmission electron microscopy also demonstrated no myoepithelial cells with chromatin condensation characteristic of apoptosis through the observation period. These findings suggest that the main reason for the disappearance of myoepithelial cells from the area around the acinus during postnatal development is the large difference between the number of myoepithelial cells and that of acinar cells, because the acinar cells retain their proliferative activity even after myoepithelial cells have become quiescent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.