We investigated the effects of nitric oxide (NO) on hepatocellular killing after simulated ischemia/reperfusion and characterized signaling factors triggering cytoprotection by NO. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 hours and reoxygenated at pH 7.4 for 2 hours. During reoxygenation, some hepatocytes were exposed to combinations of NO donors (S-nitroso-N-acetylpenicillamine [SNAP] and others), a cGMP analogue (8-bromoguanosine-3,5-cGMP [8-BrcGMP]), and a cGMP-dependent protein kinase inhibitor (KT5823). Cell viability was determined by way of propidium iodide fluorometry. Inner membrane permeabilization and mitochondrial depolarization were monitored by confocal microscopy. SNAP, but not oxidized SNAP, increased cGMP during reperfusion and decreased cell killing. Other NO donors and 8-Br-cGMP also prevented cell killing. Both guanylyl cyclase and cGMP-dependent kinase inhibition blocked the cytoprotection of NO. However, 5-hydroxydecanoate and diazoxide-mitochondrial K ATP channel modulators-did not affect NO-dependent cytoprotection or reperfusion injury. During reoxygenation, confocal microscopy showed mitochondrial repolarization, followed by depolarization, inner membrane permeabilization, and cell death. In the presence of either SNAP or 8-Br-cGMP, mitochondrial repolarization was sustained after reperfusion preventing inner membrane permeabilization and cell death. In isolated rat liver mitochondria, a cGMP analogue in the presence of a cytosolic extract and adenosine triphosphate blocked the Ca 2؉ -induced mitochondrial permeability transition (MPT), an effect that was reversed by KT5823. In conclusion, NO prevents MPT-dependent necrotic killing of ischemic hepatocytes after reperfusion through a guanylyl cyclase and cGMP-dependent kinase signaling pathway, events that may represent the target of NO cytoprotection in preconditioning. (HEPATOLOGY 2004;39:1533-1543
1 Pten (phosphatase and tensin homolog deleted on chromosome ten), a tumor suppressor, is a phosphatase with a variety of substrate specificities. Its function as a negative regulator of the class I phosphatidyl-inositol 3-kinase/Akt pathway antagonizes insulin-dependent cell signaling. The targeted deletion of Pten in mouse liver leads to insulin hypersensitivity and the upregulation of the phosphatidyl-inositol 3-kinase/Akt signaling pathway. In this study, we investigated the effects of Pten deficiency on autophagy, a major cellular degradative system responsible for the turnover of cell constituents. The autophagic degradation of [ 14 C]-leucinelabeled proteins of hepatocytes isolated from Pten-deficient livers was strongly inhibited, compared with that of control hepatocytes. However, no significant difference was found in the levels of the Atg12-Atg5 conjugate and LC3-II, the lipidated form of LC3, an intrinsic autophagosomal membrane marker, between control and Pten-deficient livers. Electron microsopic analyses showed that numerous autophagic vacuoles (autophagosomes plus autolysosomes) were present in the livers of control mice that had been starved for 48 hours, whereas they were markedly reduced in Ptendeficient livers under the same conditions. In vivo administration of leupeptin to control livers caused the inhibition of autophagic proteolysis, resulting in the accumulation of autolysosomes. These autolysosomes could be separated as a denser autolysosomal fraction from other cell membranes by Percoll density gradient centrifugation. In leupeptin-administered mutant livers, however, the accumulation of denser autolysosomes was reduced substantially. Collectively, we conclude that enhanced insulin signaling in Pten deficiency suppresses autophagy at the formation and maturation steps of autophagosomes, without inhibiting ATG conjugation reactions.
Non-alcoholic steatohepatitis (NASH) is a term used to describe a spectrum of conditions characterized by histological findings of hepatic macrovesicular steatosis with inflammation in individuals who consume little or no alcohol. The NASH patients progress to liver cirrhosis and even hepatocellular carcinoma (HCC). Hepatocyte-specific phosphatase and tensin homolog (PTEN)-deficient mice (PTEN-deficient mice), which the authors had generated previously, showed massive hepatomegaly and steatohepatitis with triglyceride accumulation followed by liver fibrosis and HCC, a phenotype similar to human NASH. Therefore, it was shown that PTEN deficiency in hepatocytes could induce hepatic steatosis, inflammation, fibrosis and tumors and that PTEN-deficient mice were a useful animal model for not only the understanding of the pathogenesis of NASH but also the development of treatment for NASH.
The role of Toll-like receptor (TLR) signaling has attracted much attention in the development of hepatic inflammation and hepatocellular carcinoma (HCC). We herein sought to determine the role of TLRs and responsible cells in steatohepatitisrelated HCC. We used hepatocyte-specific Pten-deficient (Pten ⌬hep ) mice, which exhibit steatohepatitis followed by liver tumor formation, including HCC. We then generated Pten ⌬hep /
Tlr4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.