BackgroundHuman multiple myeloma (MM) is an incurable hematological malignancy for which novel therapeutic agents are needed. Calmodulin (CaM) antagonists have been reported to induce apoptosis and inhibit tumor cell invasion and metastasis in various tumor models. However, the antitumor effects of CaM antagonists on MM are poorly understood. In this study, we investigated the antitumor effects of naphthalenesulfonamide derivative selective CaM antagonists W-7 and W-13 on MM cell lines both in vitro and in vivo.MethodsThe proliferative ability was analyzed by the WST-8 assay. Cell cycle was evaluated by flow cytometry after staining of cells with PI. Apoptosis was quantified by flow cytometry after double-staining of cells by Annexin-V/PI. Molecular changes of cell cycle and apoptosis were determined by Western blot. Intracellular calcium levels and mitochondrial membrane potentials were determined using Fluo-4/AM dye and JC-10 dye, respectively. Moreover, we examined the in vivo anti-MM effects of CaM antagonists using a murine xenograft model of the human MM cell line.ResultsTreatment with W-7 and W-13 resulted in the dose-dependent inhibition of cell proliferation in various MM cell lines. W-7 and W-13 induced G1 phase cell cycle arrest by downregulating cyclins and upregulating p21cip1. In addition, W-7 and W-13 induced apoptosis via caspase activation; this occurred partly through the elevation of intracellular calcium levels and mitochondrial membrane potential depolarization and through inhibition of the STAT3 phosphorylation and subsequent downregulation of Mcl-1 protein. In tumor xenograft mouse models, tumor growth rates in CaM antagonist-treated groups were significantly reduced compared with those in the vehicle-treated groups.ConclusionsOur results demonstrate that CaM antagonists induce cell cycle arrest, induce apoptosis via caspase activation, and inhibit tumor growth in a murine MM model and raise the possibility that inhibition of CaM might be a useful therapeutic strategy for the treatment of MM.
Numb is thought to participate in clathrin-dependent endocytosis by directly interacting with the clathrin-associated adaptor complex AP-2, although the underlying mechanisms are unknown. Numb is also known to be phosphorylated at Ser 264 in vitro and in vivo. Here, we found that Numb is phosphorylated in vitro by Ca 2+ /calmodulin-dependent protein kinase I on Ser 283 . This phosphorylation was also observed in transfected COS-7 cells, indicating its physiological relevance. Pull-down experiments showed that the phosphorylation of Numb impaired its binding to the AP-2 complex and simultaneously recruited 14-3-3 proteins in vitro. Based on experiments using Numb mutants, both the initial phosphorylation of Ser 264 and the subsequent phosphorylation of Ser 283 are sufficient to abolish the binding of Numb to AP-2 and to promote the interaction with 14-3-3 protein. These findings suggest a novel mechanism for the regulation of Numb-mediated endocytosis, namely through direct phosphorylation.
BackgroundA small number of rhabdomyosarcoma (RMS) cases involve the bone marrow. A leukemic presentation of RMS has been reported in a few case series, although almost all cases of leukemic RMS are not completely mimicking leukemia. We encountered a case with RMS cell infiltration of the bone marrow that resembled floating hematological cells.Case presentationWe encountered a rare case of a 15-year-old boy with a 2-week history of left femoral pain. Upon admission, he was afebrile with no other symptoms. No apparent cause of femoral pain was detected on an initial examination. Laboratory findings revealed normal white blood cell (WBC) count and hemoglobin concentration, with a platelet count of 10.3 × 104/μL. WBCs included 2.0% metamyelocytes, 4.5% myelocytes, and 0.5% blasts. Lactate dehydrogenase concentration was 1299 U/L, creatine kinase was 437 U/L, and C-reactive protein was 1.25 mg/dL. Bone marrow aspiration demonstrated hypercellular marrow (nucleated cell count 1.84 × 104/μL) and 89.0% of blast-like cells of all nucleated cells. The proliferating cells were negative for myeloperoxidase and esterase, and strongly positive for CD56. Positron emission tomography exhibited extensive accumulation of 18F–fludeoxyglucose with a SUVmax of 7.09. Magnetic resonance imaging revealed T1-low intensity, gadolinium-enhanced, diffuse, and irregular lesions on his pelvis and bilateral femurs. These laboratory and imaging findings suggested hematological malignancy with diffuse bone involvement, suggestive of acute leukemia. However, the pathological diagnosis of bone marrow and basal penile muscle biopsy was alveolar RMS. Karyotype analysis of bone marrow cells revealed the characteristic translocation of t(2;13)(q35;q14). The final diagnosis was alveolar RMS with massive involvement of the bone marrow and the primary site in the perineal muscles. The tumor cells both of the primary site and bone marrow were positive for myogenin.ConclusionsA literature review found a misdiagnosed case of completely mimicking leukemic RMS as natural-killer (NK)-cell leukemia. Such a misdiagnosis can have critical consequences. We experienced a rare case of alveolar RMS with symmetrical diffuse bone marrow involvement completely masquerading as acute leukemia. The results of a surface marker study showing that the tumor cells had a near NK-cell phenotype were misleading.
CDR to cisplatin can occur in NSCLC cells, and the TGF-β pathway is associated with the regulation of CDR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.