Background
Low infection and case-fatality rates have been thus far observed in Taiwan. One of the reasons for this major success is better use of big data analytics in efficient contact tracing and management and surveillance of those who require quarantine and isolation.
Objective
We present here a unique application of big data analytics among Taiwanese people who had contact with more than 3000 passengers that disembarked at Keelung harbor in Taiwan for a 1-day tour on January 31, 2020, 5 days before the outbreak of coronavirus disease (COVID-19) on the Diamond Princess cruise ship on February 5, 2020, after an index case was identified on January 20, 2020.
Methods
The smart contact tracing–based mobile sensor data, cross-validated by other big sensor surveillance data, were analyzed by the mobile geopositioning method and rapid analysis to identify 627,386 potential contact-persons. Information on self-monitoring and self-quarantine was provided via SMS, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests were offered for symptomatic contacts. National Health Insurance claims big data were linked, to follow-up on the outcome related to COVID-19 among those who were hospitalized due to pneumonia and advised to undergo screening for SARS-CoV-2.
Results
As of February 29, a total of 67 contacts who were tested by reverse transcription–polymerase chain reaction were all negative and no confirmed COVID-19 cases were found. Less cases of respiratory syndrome and pneumonia were found after the follow-up of the contact population compared with the general population until March 10, 2020.
Conclusions
Big data analytics with smart contact tracing, automated alert messaging for self-restriction, and follow-up of the outcome related to COVID-19 using health insurance data could curtail the resources required for conventional epidemiological contact tracing.
Ena/VASP proteins mediate the effects of guidance cues on the actin cytoskeleton. The single C. elegans homolog of the Ena/VASP family of proteins, UNC-34, is required for the migrations of cells and growth cones. Here we show that unc-34 mutant alleles also interact genetically with Wnt mutants to reveal a role for unc-34 in the establishment of neuronal polarity along the C. elegans anterior-posterior axis. Our mutant analysis shows that eliminating UNC-34 function results in neuronal migration and polarity phenotypes that are enhanced at higher temperatures, revealing a heat-sensitive process that is normally masked by the presence of UNC-34. Finally, we show that the UNC-34 protein is expressed broadly and accumulates in axons and at the apical junctions of epithelial cells. While most mutants lack detectable UNC-34, three unc-34 mutants that contained missense mutations in the EVH1 domain produced full-length UNC-34 that failed to localize to apical junctions and axons, supporting the role for the EVH1 domain in localizing Ena/VASP family members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.