Abstract. In this study, 121 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months between April 2009 and January 2010 representing the four seasons. The samples were determined for various compositions, including elements, ions, and organic/elemental carbon. Various approaches, such as chemical mass balance, positive matrix factorization (PMF), trajectory clustering, and potential source contribution function (PSCF), were employed for characterizing aerosol speciation, identifying likely sources, and apportioning contributions from each likely source. Our results have shown distinctive seasonality for various aerosol speciations associated with PM2.5 in Beijing. Soil dust waxes in the spring and wanes in the summer. Regarding the secondary aerosol components, inorganic and organic species may behave in different manners. The former preferentially forms in the hot and humid summer via photochemical reactions, although their precursor gases, such as SO2 and NOx, are emitted much more in winter. The latter seems to favorably form in the cold and dry winter. Synoptic meteorological and climate conditions can overwhelm the emission pattern in the formation of secondary aerosols. The PMF model identified six main sources: soil dust, coal combustion, biomass burning, traffic and waste incineration emission, industrial pollution, and secondary inorganic aerosol. Each of these sources has an annual mean contribution of 16, 14, 13, 3, 28, and 26%, respectively, to PM2.5. However, the relative contributions of these identified sources significantly vary with changing seasons. The results of trajectory clustering and the PSCF method demonstrated that regional sources could be crucial contributors to PM pollution in Beijing. In conclusion, we have unraveled some complex aspects of the pollution sources and formation processes of PM2.5 in Beijing. To our knowledge, this is the first systematic study that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.
Abstract. Geological sequestration of atmospheric carbon dioxide (CO2) can be achieved by the erosion of organic carbon (OC) from the terrestrial biosphere and its burial in long-lived marine sediments. Rivers on mountain islands of Oceania in the western Pacific have very high rates of OC export to the ocean, yet its preservation offshore remains poorly constrained. Here we use the OC content (Corg, %), radiocarbon (Δ 14Corg) and stable isotope (δ13Corg) composition of sediments offshore Taiwan to assess the fate of terrestrial OC, using surface, sub-surface and Holocene sediments. We account for rock-derived OC to assess the preservation of OC eroded from the terrestrial biosphere and the associated CO2 sink during flood discharges (hyperpycnal river plumes) and when river inputs are dispersed more widely (hypopycnal). The Corg, Δ14Corg and δ 13Corg of marine sediment traps and cores indicate that during flood discharges, terrestrial OC can be transferred efficiently down submarine canyons to the deep ocean and accumulates offshore with little evidence for terrestrial OC loss. In marine sediments fed by dispersive river inputs, the Corg, Δ14Corg and δ 13Corg are consistent with mixing of terrestrial OC with marine OC and suggest that efficient preservation of terrestrial OC (>70%) is also associated with hypopycnal delivery. Sub-surface and Holocene sediments indicate that this preservation is long-lived on millennial timescales. Re-burial of rock-derived OC is pervasive. Our findings from Taiwan suggest that erosion and offshore burial of OC from the terrestrial biosphere may sequester >8 TgC yr−1 across Oceania, a significant geological CO2 sink which requires better constraint. We postulate that mountain islands of Oceania provide a strong link between tectonic uplift and the carbon cycle, one moderated by the climatic variability which controls terrestrial OC delivery to the ocean.
In this study, 121 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months between April 2009 and January 2010 representing the four seasons. The samples were determined for various compositions, including elements, ions, and organic/elemental carbon. Various approaches, such as chemical mass balance, positive matrix factorization (PMF), trajectory clustering, and potential source contribution function (PSCF), were employed for characterizing aerosol speciation, identifying likely sources, and apportioning contributions from each likely source. Our results have shown distinctive seasonalities for various aerosol speciations associated with PM2.5 in Beijing. Soil dust waxes in the spring and wanes in the summer. Regarding the secondary aerosol components, inorganic and organic species may behave in different manners. The former preferentially forms in the hot and humid summer via photochemical reactions, although their precursor gases, such as SO2 and NOx, are emitted much more in winter. The latter seems to favorably form in the cold and dry winter. Synoptic meteorological and climate conditions can overwhelm the emission pattern in the formation of secondary aerosols. The PMF model identified six main sources: soil dust, coal combustion, biomass burning, traffic and waste incineration emission, industrial pollution, and secondary inorganic aerosol. Each of these sources has an annual mean contribution of 16, 14, 13, 3, 28, and 26%, respectively, to PM2.5. However, the relative contributions of these identified sources significantly vary with changing seasons. The results of trajectory clustering and the PSCF method demonstrated that regional sources could be crucial contributors to PM pollution in Beijing. In conclusion, we have unraveled some complex aspects of the pollution sources and formation processes of PM2.5 in Beijing. To our knowledge, this study is the first systematical study that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective
The occurrence of extreme weather conditions appears on the rise under current climate change conditions, resulting in more frequent and severe floods. The devastating floods in southern China in 2010 and eastern Australia 2010–2011, serve as a solemn testimony to that notion. Accompanying the excess runoffs, elevated amount of terrigenous materials, including nutrients for microalgae, are discharged to the coastal ocean. However, how these floods and the materials they carry affect the coastal ocean ecosystem is still poorly understood. Yangtze River (aka Changjiang), which is the largest river in the Eurasian continent, flows eastward and empties into the East China Sea. Since the early twentieth century, serious overflows of the Changjiang have occurred four times. During the two most recent ones in July 1998 and 2010, we found total primary production in the East China Sea reaching 147 × 103 tons carbon per day, which may support fisheries catch as high as 410 × 103 tons per month, about triple the amount during non‐flooding periods based on direct field oceanographic observations. As the frequencies of floods increase world wide as a result of climate change, the flood‐induced biological production could be a silver lining to the hydrological hazards and human and property losses inflicted by excessive precipitations.
Agar media made with 0.4% colloidal chitin plus mineral salts and adjusted to pH 8.0 was superior to four other commonly used media for the isolation and enumeration of actinomycetes from water samples. More actinomycetes developed on chitin agar, and the development of bacteria and fungi was suppressed. Frozen and vacuum-dried chitin from aqueous colloidal suspensions was finely divided and gave results comparable to those obtained with media prepared from colloidal suspensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.