Three-dimensional bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. A common challenge for 3D bioprinting materials is that the structures printed from the biodegradable polymer hydrogels tend to collapse because of the poor mechanical stability. In this study, dual stimuli-responsive biodegradable polyurethane (PU) dispersions (PUA2 and PUA3) were synthesized from an eco-friendly waterborne process. Acrylate group was introduced in the PU chain end to serve as a photosensitive moiety for UV-induced cross-linking and improvement of the printability, while mixed oligodiols in the soft segment remained to be the thermosensitive moiety. The photo/thermal-induced morphological changes of PU nanoparticles were verified by dynamic light scattering, small-angle X-ray scattering, and rheological measurement of the dispersions. It was observed that these PU nanoparticles became more rod-like in shape after UV treatment and formed compact packing structures upon further heating. With the thermosensitive properties, these UV-cured PU dispersions underwent rapid thermal gelation with gel moduli in the range 0.5-2 kPa near body temperature. The rheological properties of the PU hydrogels including dynamic viscoelasticity, creep recovery, and shear thinning behavior at 37 °C were favorable for processing by microextrusion-based 3D printing and could be easily mixed with cells before printing to produce cell-laden constructs. The dual-responsive hydrogel constructs demonstrated higher resolution and shape fidelity as well as better cell viability and proliferation than the thermoresponsive control. Moreover, the softer hydrogel (PUA3) with a low modulus (<1 kPa) could offer neural stem cells a tofu-like, stable, and inductive 3D microenvironment to proliferate and differentiate. We expect that the photo/thermoresponsive biodegradable polyurethane ink may offer unique rheological properties to contribute toward the custom-made bioprinting of soft tissues.
In this study, silver-doped nickel oxide (NiO:Ag) was successfully synthesized by a sol-gel method and spin-coated on indium titanium oxide (ITO) as a hole-transport layer for polymer light-emitting diodes (PLED). After the calcination of the NiO:Ag/ ITO substrate at 300 C for 1 h, stable conductive regions and the mean workfunction on the NiO:Ag/ITO surface reached 89.43% and 5.53 eV, respectively, which were greater than those on a conventional poly [3,4-ethylenedioxythiophene] polystyrene sulfonate (PEDOT:PSS)/ITO surface. When NiO:Ag (300 C)/ITO was used as an anode window substrate for PLEDs, the enhancement factor for the average current efficiency in the current-density range of 20-50 mA/cm 2 and electroluminescence intensity at an applied bias of 8.0 V were 4.60 and 2.55 times, respectively, in comparison with those of PLED based on a conventional PEDOT: PSS/ITO anode. Highlights• NiO:Ag is synthesized by a sol-gel method and spin-coated on ITO as a HTL for PLED.• NiO:Ag/ITO calcined at 300 C for 1 h has the best microscopic electrical properties.• The performance for proposed PLED is much better than that for typical PLED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.