In this study, silver-doped nickel oxide (NiO:Ag) was successfully synthesized by a sol-gel method and spin-coated on indium titanium oxide (ITO) as a hole-transport layer for polymer light-emitting diodes (PLED). After the calcination of the NiO:Ag/ ITO substrate at 300 C for 1 h, stable conductive regions and the mean workfunction on the NiO:Ag/ITO surface reached 89.43% and 5.53 eV, respectively, which were greater than those on a conventional poly [3,4-ethylenedioxythiophene] polystyrene sulfonate (PEDOT:PSS)/ITO surface. When NiO:Ag (300 C)/ITO was used as an anode window substrate for PLEDs, the enhancement factor for the average current efficiency in the current-density range of 20-50 mA/cm 2 and electroluminescence intensity at an applied bias of 8.0 V were 4.60 and 2.55 times, respectively, in comparison with those of PLED based on a conventional PEDOT: PSS/ITO anode. Highlights• NiO:Ag is synthesized by a sol-gel method and spin-coated on ITO as a HTL for PLED.• NiO:Ag/ITO calcined at 300 C for 1 h has the best microscopic electrical properties.• The performance for proposed PLED is much better than that for typical PLED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.