Plasmon hybridization modes are observed in the extinction spectra of a metal-insulator-metal (MIM) nanodisk array fabricated using nanospherical-lens lithography. Two distinct hybridization modes are observed in this vertically aligned configuration. Theoretical simulation indicates that the bonding mode located at a lower energy level exhibits an antiphase charge distribution and corresponds to the dark plasmon mode. This is vastly different compared to antibonding dark plasmon mode observed in the conventional dimer configuration. The observed mode is tunable over a wide spectral range simply by varying the insulator thickness and the diameters of the MIM nanodisks. Absorption is the dominating extinction process for the dark plasmon, while scattering dominates the bright plasmon mode. The ability to experimentally measure and tune dark plasmon modes using a MIM configuration should catalyze more novel studies that take full advantages of the absorption-dominated dark plasmon mode.
Various infra-red and planar chiral metamaterials were fabricated using the modified Nanospherical-Lens Lithography. By replacing the light source with a hand-held ultraviolet lamp, its asymmetric light emission pattern produces the elliptical-shaped photoresist holes after passing through the spheres. The long axis of the ellipse is parallel to the lamp direction. The fabricated ellipse arrays exhibit localized surface plasmon resonance in mid-infra-red and are ideal platforms for surface enhanced infra-red absorption (SEIRA). We also demonstrate a way to design and fabricate complicated patterns by tuning parameters in each exposure step. This method is both high-throughput and low-cost, which is a powerful tool for future infra-red metamaterials applications.
Precision machining operations necessitate highly accurate, rigid, and stable machine-tool structures. In response to this need, parallel architecture machines, based on the concepts of the Stewart Platform, are emerging. In this paper, considering major inaccuracy factors related to the manufacture, geometry, and kinematics, of such machines, first and second order error models are presented, and followed by a comparative assessment of these models in conjunction with illustrative examples. Furthermore, in order to understand the character and propagation of errors of 6-DOF Stewart Platform based machine tools, sensitivity analysis is adopted to describe the contribution of each error component to the total position and orientation error of the mechanism. An automated error analysis system that computes and graphically depicts the error distributions throughout the workspace along with the results of sensitivity analysis is developed and demonstrated.
Transesophageal echocardiography performed during manual CPR in humans disclosed three different patterns of mitral valve position and PVF during chest compression. The presence of an opened mitral valve with forward mitral flow and backward pulmonary venous flow during chest compression in a small number of subjects underscores this heterogeneity in blood flow and suggests the possible existence of a "left atrium pump" in addition to the currently known "left ventricle pump" and "chest pump" mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.