This paper presents a new approach to automatic segmentation of foreground objects from an image sequence by integrating techniques of background subtraction and motion-based foreground segmentation. First, a region-based motion segmentation algorithm is proposed to obtain a set of motion-coherence regions and the correspondence among regions at different time instants. Next, we formulate the classification problem as a graph labeling over a region adjacency graph based on Markov random fields (MRFs) statistical framework. A background model representing the background scene is built and then is used to model a likelihood energy. Besides the background model, a temporal coherence is also maintained by modeling it as the prior energy. On the other hand, color distributions of two neighboring regions are taken into consideration to impose spatial coherence. Then, the a priori energy of MRFs takes both spatial and temporal coherence into account to maintain the continuity of our segmentation. Finally, a labeling is obtained by maximizing the a posteriori energy of the MRFs. Under such formulation, we integrate two different kinds of techniques in an elegant way to make the foreground detection more accurate. Experimental results for several video sequences are provided to demonstrate the effectiveness of the proposed approach.
In recent years, the development of automatic traf(Ec surveillance system has received great attention in the academic and industrial research. Based on computer vision technology, the purpose of this work is to construct the traf(Ec surveillance system on the highway for estimating tratlEc parameters, such as vehicle counting and classiffication. The proposed system mainly consists of three steps including vehicle region extraction, vehicle tracking, and classi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.