Methionine and cysteine are constituents of glutathione. To understand the effects of these two sulfur amino acids on the glutathione (GSH)-dependent detoxification defense system, intracellular GSH and GSH-related enzyme activities, including GSH peroxidase, GSH reductase, GSH S-transferase (GST) and gamma-glutamylcysteine synthetase, were determined. In addition, the expression of three GST isozymes and carbonic anhydrase III (CA III) was examined. Hepatocytes isolated from male Sprague-Dawley rats were cultured with 0.1, 0.3, 0.5 or 1.0 mmol/L each of L-methionine and L-cysteine, for up to 7 d. Cells incubated with 0.5 or 1.0 mmol/L methionine and cysteine had increased intracellular GSH. A twofold increase was observed on d 6 compared with freshly isolated hepatocytes (P < 0.05). However, intracellular GSH was lower in cells treated with 0.3 or 0.1 mmol/L each of methionine and cysteine than in cells tested with 0.5 or 1.0 mmol/L. Although the GSH level differed significantly between cells cultured with 0.3 or 1.0 mmol/L of methionine and cysteine, GSH-related enzymes did not differ at these two concentrations. The activity generally remained constant for the first 24 h, then increased up to d 4. Immunodetection analysis revealed no difference in the level of CA III and GST isoforms, Ya, Yb and Yp, with amino acids each at a concentration of at least 0.3 mmol/L. Yp expression steadily increased up to d 7. Most proteins decreased rapidly after 48 h when cultured with 0.1 mmol/L of methionine and cysteine; however, the Yp level increased up to d 6. In conclusion, results indicate that a twofold increase of intracellular GSH is reached by adding methionine and cysteine at a concentration >0.5 mmol/L to the culture medium. The concentrations of methionine and cysteine for maintaining hepatic GSH are higher than for GSH-related enzyme activity and for GST isoform expression.
According to the multiple alignment of various dihydrolipoamide dehydrogenases (E3s) sequences, three human mutant E3s of the conserved residues in the center domain, N286D, N286Q, and D320N were created, over-expressed and purified. We characterized these mutants to investigate the reaction mechanism of human dihydrolipoamide dehydrogenases. The specific activities of N286D, N286Q, and D320N are 30.84%, 24.57% and 48.60% to that of the wild-type E3 respectively. The FAD content analysis indicated that these mutant E3s about 96.0%, 99.4% and 82.7% of FAD content compared to that of wild-type E3 respectively. The molecular weight analysis showed that these three mutant proteins form the dimer. Kinetic's data demonstrated that the K(cat) of both forward and reverse reactions of these mutant proteins were decreased. These results suggest that N286 and D320 play a role in the catalytic function of the E3.
The effect of culture medium on glutathione (GSH) dependent detoxification defence system of primary cultured hepatocyte from either male or female rats was studied. Intracellular reduced (GSH) and oxidized glutathione (GSSG), and six GSH-related enzyme activities, including GSH peroxidase (GSH Px), GSH reductase (GSH Rd), cytosolic GSH S-transferase (cGST), microsomal GSH S-transferase (mGST), gamma-glutamyl transpeptidase (GTP), and gamma-glutamylcysteine synthetase (GCS), were investigated during a 6-day culture. Media free of fetal bovine serum (FBS) and with 2.5 or 10% FBS were used. Whatever the medium, there was an initial decrease of intracellular GSH and GSSG, a threefold increase of GSH at day 3 and fourfold increase of GSSG at day 4, later decreasing to their original level at day 6. The activities of all six GSH-related enzymes of male and female hepatocytes remained relatively stable during the first 72h, then gradually decreased to 50-80% of initial activities. With the exception of cGST, time-course profiles of other enzyme activities were not significantly different among various media. In both sexes, higher cGST activity was maintained for cells cultured in the presence of FBS. Results of immunoblotting analysis of cytosolic GST isozymes indicate that the placental form of GST (Yp) was markedly increased after plating and the extent of increase of Yp was higher in the presence of FBS. Despite the culture medium, the level of GST isoform Ya was maintained steadily for 6 days, however, Yb was maintained during the first 3 days and then decreased. In terms of the gender difference, GSH Px and GTP activities of hepatocytes from females were significantly greater than of males over the entire culture period. Results indicate that FBS seems not to be absolutely essential in maintaining GSH level and most of the GSH-related enzyme activities in rat hepatocytes. Furthermore, GSH levels and GSH-related enzyme activities of hepatocytes from female rats were similar to those from male rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.