Human detection is important in many applications and has attracted significant attention over the last decade. The Histograms of Oriented Gradients (HOG) as effective local descriptors are used with binary sliding window mechanism to achieve good detection performance. However, the computation of HOG under such framework is about billion times and the pure software implementation for HOG computation is hard to meet the real-time requirement. This study proposes a hardware architecture called One-HOG accelerator operated on FPGA of Xilinx Spartan-6 LX-150T that provides an efficient way to compute HOG such that an embedded real-time platform of HW/SW co-design for application to crowd estimation and analysis is achieved. The One-HOG accelerator mainly consists of gradient module and histogram module. The gradient module is for computing gradient magnitude and orientation; histogram module is for generating a 36-D HOG feature vector. In addition to hardware realization, a new method called Histograms-of-Oriented-Gradients AdaBoost Long-Feature-Vector (HOG-AdaBoost-LFV) human classifier is proposed to significantly decrease the number of times to compute the HOG without sacrificing detection performance. The experiment results from three static image and four video datasets demonstrate that the proposed SW/HW (software/hardware) co-design system is 13.14 times faster than the pure software computation of Dalal algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.