Vascular cognitive impairment dementia (VCID), which is an increasingly important cause of dementia in the elderly, lacks effective treatments. Many different types of vascular disease are included under the diagnosis of VCID, including large vessel disease with multiple strokes, and small vessel disease with lacunar infarcts and white matter disease. Animal models have been developed to study the multiple forms of VCID. Because of its progressive course, small vessel disease (SVD) is thought to be the optimal form of VCID for treatment. One theory is that the pathophysiology involves hypoxic hypoperfusion resulting in injury to the white matter and neuronal death. Bilateral occlusion of the common carotid arteries (BCAO) in a normotensive rat, which reduces cerebral blood flow, induces hypoxia with white matter damage; this model has been used to test drugs to block the injury. Another model is the spontaneously hypertensive/stroke prone rat (SHR/SP). Hypertension leads to small vessel disease resulting in progressive damage to the white matter, cortex and hippocampus. Bilateral carotid artery stenosis (BCAS) with coils or ameroid constrictors produces a slower development of changes than BCAO, avoiding the acute ischemia. A few studies have been done with the two-clip, two-vessel occlusion renal model for induction of hypertension. There are benefits and drawbacks to each of these models with the model selected depending on the type of vascular damage that is to be studied. This review describes the most commonly used models, and the drugs that have been used to reduce the damage.
Vascular cognitive impairment is a major cause of dementia caused by chronic hypoxia, producing progressive damage to white matter (WM) secondary to blood-brain barrier (BBB) opening and vascular dysfunction. Tight junction proteins (TJPs), which maintain BBB integrity, are lost in acute ischemia. Although angiogenesis is critical for neurovascular remodeling, less is known about its role in chronic hypoxia. To study the impact of TJP degradation and angiogenesis during pathological progression of WM damage, we used the spontaneously hypertensive/stroke prone rats with unilateral carotid artery occlusion and Japanese permissive diet to model WM damage. MRI and IgG immunostaining showed regions with BBB damage, which corresponded with decreased endothelial TJPs, claudin-5, occludin, and ZO-1. Affected WM had increased expression of angiogenic factors, Ki67, NG2, VEGF-A, and MMP-3 in vascular endothelial cells and pericytes. To facilitate the study of angiogenesis, we treated rats with minocycline to block BBB disruption, reduce WM lesion size, and extend survival. Minocycline-treated rats showed increased VEGF-A protein, TJP formation, and oligodendrocyte proliferation. We propose that chronic hypoxia disrupts TJPs, increasing vascular permeability, and initiating angiogenesis in WM. Minocycline facilitated WM repair by reducing BBB damage and enhancing expression of TJPs and angiogenesis, ultimately preserving oligodendrocytes.
An X-linked condition characterized by the combination of hypomyelinating leukodystrophy and spondylometaphyseal dysplasia (H-SMD) has been observed in only four families, with linkage to Xq25-27, and recent genetic characterization in two families with a common AIFM1 mutation. In our study, 12 patients (6 families) with H-SMD were identified and underwent comprehensive assessment accompanied by whole-exome sequencing (WES). Pedigree analysis in all families was consistent with X-linked recessive inheritance. Presentation typically occurred between 12 and 36 months. In addition to the two disease-defining features of spondylometaphyseal dysplasia and hypomyelination on MRI, common clinical signs and symptoms included motor deterioration, spasticity, tremor, ataxia, dysarthria, cognitive defects, pulmonary hypertension, nystagmus, and vision loss due to retinopathy. The course of the disease was slowly progressive. All patients had maternally inherited or de novo mutations in or near exon 7 of AIFM1, within a region of 70 bp, including synonymous and intronic changes. AIFM1 mutations have previously been associated with neurologic presentations as varied as intellectual disability, hearing loss, neuropathy, and striatal necrosis, while AIFM1 mutations in this small region present with a distinct phenotype implicating bone. Analysis of cell lines derived from four patients identified significant reductions in AIFM1 mRNA and protein levels in osteoblasts. We hypothesize that AIFM1 functions in bone metabolism and myelination and is responsible for the unique phenotype in this condition.Electronic supplementary materialThe online version of this article (doi:10.1007/s10048-017-0520-x) contains supplementary material, which is available to authorized users.
Brain vasogenic edema, involving disruption of the blood-brain barrier, is a common pathological condition in several neurological diseases, with a heterogeneous prognosis. It is sometimes reversible, as in posterior reversible encephalopathy syndrome, but often irreversible and our current clinical tools are insufficient to reveal its reversibility. Here, we show that increased fractional anisotropy in magnetic resonance imaging is associated with the reversibility of vasogenic edema. Spontaneously, hypertensive rats-stroke prone demonstrated posterior reversible encephalopathy syndrome-like acute encephalopathy in response to high-dose cyclosporine A treatment; the deteriorating neurological symptoms and worsening scores in behavioral tests, which were seen in acute phase, dissappered after recovery by cessation of cyclosporine A. In the acute phase of encephalopathy, the fractional anisotropy and apparent diffusion coefficient increased in areas with IgG leakage. This increase of fractional anisotropy occurred in the absence of demyelination: fluid leakage into the myelinated space increased the axial, but not the radial, diffusivity, resulting in the increased fractional anisotropy. This increased fractional anisotropy returned to pre-encephalopathy values in the recovery phase. Our results highlight the importance of the fractional anisotropy increase as a marker for the reversibility of brain edema, which can delineate the brain areas for which recovery is possible. KeywordsBlood-brain barrier, brain vasogenic edema, diffusion tensor imaging, fractional anisotropy, posterior reversible encephalopathy syndrome
Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.