Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Furthermore, reports on the function of pectin in the pistil are limited. Herein, we report the functional characterization of the OsPMT16 gene, which encodes a putative pectin methyltransferase (PMT) in rice. The cell walls of rice leaves contain less pectin, and chemical analysis of pectin in the flower organ had not been previously performed. Therefore, in the present study, the amount of pectin in the reproductive tissues of rice was investigated. Of the reproductive tissues, the pistil was especially rich in pectin; thus, we focused on the pistil. OsPMT16 expression was confirmed in the pistil, and effects of pectin methylesterification regulation on the reproductive stage were investigated by studying the phenotype of the T-DNA insertion mutant. The ospmt16 mutant showed significantly reduced fertility. When the flowers were observed, tissue morphogenesis was abnormal in the pistil. Immunofluorescence staining by pectin-specific monoclonal antibodies of the pistil revealed that total pectin and esterified pectin were decreased among ospmt16 mutants. These results indicate that OsPMT16 contributes significantly to pistil development during reproductive growth.
Precise directional control of pollen tube growth via mechanical guidance by pistil tissue is critical for the successful fertilization of flowering plants and requires active cell-to-cell communication and maintenance of softness in the transmitting tissue. However, the regulation of transmitting tissue softness as controlled by cell wall properties, especially pectin, has not been reported. Here we report that regulation of pectin methylesterification supports pollen elongation through pistil transmitting tissues in Oryza sativa. The rice pectin methylesterase gene OsPMT10 was strongly expressed in reproductive tissues, especially the pistil. The ospmt10 mutant did not have a significant effect on vegetative growth, but the fertility rate was reduced by approximately half. In the ospmt10 mutant, pollen tube elongation was observed in the transmitting tissue of the style, but approximately half of the pollen tubes did not extend all the way to the ovule. Tissue cross-sections of the upper ovary were prepared, and immunohistochemical staining using LM19 and LM20 showed that methylesterified pectin distribution was decreased in ospmt10 compared with the wild-type. The decreased expression of methylesterified pectins in ospmt10 may have resulted in loss of fluidity in the apoplast space of the transmitting tissue, rendering it difficult for the pollen tube to elongate in the transmitting tissue and thereby preventing it from reaching the ovule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.