<abstract>
<p>The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA's convergence speed, and the adaptive t-distribution mutation balances is used enhanced the exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to increase the diversity of populations. The performances of DTSMA are verified on CEC2019 functions and eight engineering design problems. The results show that for the CEC2019 functions, the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising metaheuristic optimization for global optimization problems.</p>
</abstract>
In order to solve the inverse kinematics (IK) of complex manipulators efficiently, a hybrid equilibrium optimizer slime mould algorithm (EOSMA) is proposed. Firstly, the concentration update operator of the equilibrium optimizer is used to guide the anisotropic search of the slime mould algorithm to improve the search efficiency. Then, the greedy strategy is used to update the individual and global historical optimal to accelerate the algorithm’s convergence. Finally, the random difference mutation operator is added to EOSMA to increase the probability of escaping from the local optimum. On this basis, a multi-objective EOSMA (MOEOSMA) is proposed. Then, EOSMA and MOEOSMA are applied to the IK of the 7 degrees of freedom manipulator in two scenarios and compared with 15 single-objective and 9 multi-objective algorithms. The results show that EOSMA has higher accuracy and shorter computation time than previous studies. In two scenarios, the average convergence accuracy of EOSMA is 10e−17 and 10e−18, and the average solution time is 0.05 s and 0.36 s, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.