We consider one-level additive Schwarz domain decomposition preconditioners for the Helmholtz equation with variable coefficients (modelling wave propagation in heterogeneous media), subject to boundary conditions that include wave scattering problems. Absorption is included as a parameter in the problem. This problem is discretized using $H^1$-conforming nodal finite elements of fixed local degree $p$ on meshes with diameter $h = h(k)$, chosen so that the error remains bounded with increasing $k$. The action of the one-level preconditioner consists of the parallel solution of problems on subdomains (which can be of general geometry), each equipped with an impedance boundary condition. We prove rigorous estimates on the norm and field of values of the left- or right-preconditioned matrix that show explicitly how the absorption, the heterogeneity in the coefficients and the dependence on the degree enter the estimates. These estimates prove rigorously that, with enough absorption and for $k$ large enough, GMRES is guaranteed to converge in a number of iterations that is independent of $k,p$ and the coefficients. The theoretical threshold for $k$ to be large enough depends on $p$ and on the local variation of coefficients in subdomains (and not globally). Extensive numerical experiments are given for both the absorptive and the propagative cases; in the latter case, we investigate examples both when the coefficients are nontrapping and when they are trapping. These experiments support (i) our theory in terms of dependence on polynomial degree and the coefficients; and (ii) the sharpness of our field of values estimates in terms of the level of absorption required.
In this paper, we present a family of new mixed finite element methods for linear elasticity for both spatial dimensions n = 2, 3, which yields a conforming and strongly symmetric approximation for stress. Applying P k+1 − P k as the local approximation for the stress and displacement, the mixed methods achieve the optimal order of convergence for both the stress and displacement when k ≥ n. For the lower order case (n − 2 ≤ k < n), the stability and convergence still hold on some special grids. The proposed mixed methods are efficiently implemented by hybridization, which imposes the inter-element normal continuity of the stress by a Lagrange multiplier. Then, we develop and analyze multilevel solvers for the Schur complement of the hybridized system in the two dimensional case. Provided that no nearly singular vertex on the grids, the proposed solvers are proved to be uniformly convergent with respect to both the grid size and Poisson's ratio. Numerical experiments are provided to validate our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.