Progression of prostate cancer following castration is associated with increased androgen receptor (AR) expression and signaling despite AR blockade. Recent studies suggest that these activities are due to the generation of constitutively active AR splice variants, but the mechanisms by which these splice variants could mediate such effects are not fully understood. Here we have identified what we believe to be a novel human AR splice variant in which exons 5, 6, and 7 are deleted (AR v567es ) and demonstrated that this variant can contribute to cancer progression in human prostate cancer xenograft models in mice following castration. We determined that, in human prostate cancer cell lines, AR v567es functioned as a constitutively active receptor, increased expression of full-length AR (AR fl ), and enhanced the transcriptional activity of AR. In human xenografts, human prostate cancer cells transfected with AR v567es cDNA formed tumors that were resistant to castration. Furthermore, the ratio of AR v567es to AR fl expression within the xenografts positively correlated with resistance to castration. Importantly, we also detected AR v567es frequently in human prostate cancer metastases. In summary, these data indicate that constitutively active AR splice variants can contribute to the development of castration-resistant prostate cancers and may serve as biomarkers for patients who are likely to suffer from early recurrence and are candidates for therapies directly targeting the AR rather than ligand.
Prostate tumors develop resistance to androgen deprivation therapy (ADT) by multiple mechanisms, one of which is to express constitutively active androgen receptor (AR) splice variants lacking the ligand binding domain. AR splice variant 7 (AR-V7, also termed AR3) is the most abundantly expressed variant that drives prostate tumor progression under ADT conditions. However, the molecular mechanism by which AR-V7 is generated remains unclear. In this manuscript, we demonstrated that RNA splicing of AR-V7 in response to ADT was closely associated with AR gene transcription initiation and elongation rates. Enhanced AR gene transcription by ADT provides a pre-requisite condition that further increases the interactions between AR pre-mRNA and splicing factors. Under ADT conditions, recruitment of several RNA splicing factors to the 3’ splicing site for AR-V7 was increased. We identified two RNA splicing enhancers and their binding proteins (U2AF65 and ASF/SF2) that played critical roles in splicing AR pre-mRNA into AR-V7. These data indicate that ADT-induced AR gene transcription rate and splicing factor recruitment to AR pre-mRNA contribute to the enhanced AR-V7 levels in prostate cancer cells.
BackgroundAlthough androgens are depleted in castration resistant prostate cancer (CRPC), metastases still express nuclear androgen receptor (AR) and androgen regulated genes. We recently reported that C-terminal truncated constitutively active AR splice variants contribute to CRPC development. Since specific antibodies detecting all C-terminal truncated AR variants are not available, our aim was to develop an approach to assess the prevalence and function of AR variants in prostate cancer (PCa).Methodology/Principal FindingsUsing 2 antibodies against different regions of AR protein (N- or C-terminus), we successfully showed the existence of AR variant in the LuCaP 86.2 xenograft. To evaluate the prevalence of AR variants in human PCa tissue, we used this method on tissue microarrays including 50 primary PCa and 162 metastatic CRPC tissues. RT-PCR was used to confirm AR variants. We observed a significant decrease in nuclear C-terminal AR staining in CRPC but no difference between N- and C-terminal AR nuclear staining in primary PCa. The expression of the AR regulated proteins PSA and PSMA were marginally affected by the decrease in C-terminal staining in CRPC samples. These data suggest that there is an increase in the prevalence of AR variants in CRPC based on our ability to differentiate nuclear AR expression using N- and C-terminal AR antibodies. These findings were validated using RT-PCR. Importantly, the loss of C-terminal immunoreactivity and the identification of AR variants were different depending on the site of metastasis in the same patient.ConclusionsWe successfully developed a novel immunohistochemical approach which was used to ascertain the prevalence of AR variants in a large number of primary PCa and metastatic CRPC. Our results showed a snapshot of overall high frequency of C-terminal truncated AR splice variants and site specific AR loss in CRPC, which could have utility in stratifying patients for AR targeted therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.