The root system plays an important role in the growth and development of cotton, and root growth is closely related to shoot growth, both of which are affected by N availability in the soil. However, it is unknown how N affects root growth and the rootshoot relationship under various N rates in the Yellow River Basin, China. Thus, the aim of this study was to assess the impacts of the application rate of N on root growth and the root-shoot relationship, to provide insight into the N regulation of root and shoot growth and N efficiency from the perspective of the root system. A field experiment conducted in 2014 and 2015 was used to determine the effects of N rates (0, 120, 240, and 480 kg ha −1) on root morphology, root distribution, the root-shoot relationship, and cotton yield. A moderate N fertilization rate (240 kg ha −1) increased root length, root surface area, and root biomass in most soil layers and significantly increased total root growth and total root biomass by more than 36.06% compared to the 0 kg ha −1 treatment. In addition, roots in the surface soil layers were more strongly affected by N fertilization than roots distributed in the deeper soil layers. Total root length, total root surface area, and root biomass in the 0-15 cm layer were significantly correlated with shoot biomass and boll biomass. In the 60-75 cm layer, total root length, total root surface area, and root length were significantly positively correlated with seed cotton yield. The application of a moderate level of N markedly increased total shoot biomass, boll biomass, and seed cotton yield. Our results show that increased shoot and boll biomasses were correlated with a significant increase in the root system especially the shallow roots in the moderate N treatment (240 kg ha −1), leading to an increase in cotton seed yield.
The objective of this study was to assess the impacts of nitrogen on the physiological characteristics of the source–sink system of upper fruiting branches under various amounts of nitrogen fertilization. A two-year field experiment was conducted with a Bt cotton cultivar in the Yellow River Basin of China. The growth and yield of cotton of the upper fruiting branches were compared under four nitrogen levels: Control (N0, 0 kg ha−1), low nitrogen (N1, 120 kg ha−1), moderate nitrogen (N2, 240 kg ha−1), and high nitrogen (N3, 480 kg ha−1). The results indicated that in the subtending leaves in upper fruiting branches, chlorophyll content, protein content, and peroxidase (POD) activity dramatically increased with nitrogen application, reaching the highest under the moderate nitrogen treatment. The physiological characters in the seeds had the same trends as in the subtending leaves. Furthermore, the moderate nitrogen rate (240 kg ha−1) had a favorable yield and quality. Our results supported that a moderate nitrogen rate (240 kg ha−1) could coordinate the source–sink growth of cotton in the late stage, enhance the yield and fiber quality, and decrease the cost of fertilizer in the Yellow River Basin of China and other similar ecological areas.
Melatonin is effective in enhancing various abiotic stress resistances of plants. However, its underlying mechanisms in drought-resistance in winter wheat (Triticum aestivum L.) is not clear. The goal of this work was to investigate the effect of melatonin on seed germination and to evaluate leaf antioxidant physiology for two wheat varieties. Experiments included 20% PEG, melatonin plus 20% PEG and a control using two contrasting wheat varieties (JM22-drought sensitive and HG35-drought resistant). Melatonin levels were 0, 1, 10, 100 and 300 μmol L-1. Results revealed that 300 μmol L-1 of melatonin alleviated the negative effect of water stress on germination and increased radicle length, radicle number, and plumule length of the germinated seeds. Principal component analysis showed a significant change in amino acid content during germination and this change was dependent on melatonin concentration and the variety. Lysine (Lys) content in wheat seeds under the PEG plus 300 μmol L-1 melatonin treatment increased compared with that of the seeds under PEG alone. There was a significant and positive correlation between Lys content and morphological index of germination. During seedling growth, soluble protein was involved in osmotic adjustment and superoxide dismutase (SOD) activity was increased to mitigate the damage in the cytomembrane of JM 22 leaf under 300 μmol L-1 melatonin plus PEG treatment. The effect of melatonin was dependent on SOD activity increasing significantly for HG35-a drought resistant variety. The results of this work lays a foundation for further studies to determine if melatonin can be economically used to mitigate the impact of dry planting conditions on wheat productivity in North China Plain.
Increasing plant density usually increases the intra‐specific competition of maize plants. This study was conducted to determine whether maize (Zea mays L.) hybrid density tolerance is related to intra‐specific competition. Field experiments were conducted using a split‐plot design, the main plots contained four maize hybrids, and subplots were 12 plant densities varied from 1.5 to 18 × 104 plants ha−1. This study focused on dry matter accumulation, grain yield (GY), competition intensity (CI), and absolute severity of competition (ASC) based on the above treatments. Among all tested hybrids, GY exhibited a curvilinear response to plant density, which was well characterized by the Steinhart–Hart equation. Maize hybrids differed in optimum GY in descending order as follows: Zhongdan909 (ZD909) > Xianyu335 (XY335) = Yedan13 (YD13) > Zhongdan2 (ZD2). The CI and ASC of tested maize hybrids indicated that intra‐specific competition increased with increasing plant density. In most cases, the CI and ASC of older maize hybrids were higher than those of modern maize hybrids when plant density exceeded 9.0 × 104 plants ha−1. The results showed that the slope of the linear regression of ASC and plant density (i.e., the k‐value) could be used to compare the intra‐specific CI of maize hybrids, and there were significant negative correlations of k‐value with optimum plant density and GY. Intra‐specific competition is negatively correlated with the density tolerance of maize hybrids. This relationship may provide new insights for determining future maize breeding targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.