A stable dual-wavelength Tm3+:Ho3+ co-doped fiber laser operating above 2 μm based on cascaded single-mode-multimode-single-mode (SMS) fiber structures is proposed and experimentally demonstrated. Based on the theoretical analysis of the transmission properties of the SMS fiber structure, two cascaded SMS fiber devices with different multimode fiber (MMF) lengths were used in our laser system, where one acted as a long-pass filter to suppress the competitive laser below 2 μm, and the other worked as a band-pass filter to select the specific operating wavelengths of the laser. Dual-wavelength operation of the fiber laser at 2002.8 and 2016.1 nm has been achieved in the experiment with a signal to a noise ratio up to 50 dB.
A novel passively Q-switched all-fiber laser using a single mode-multimode-single mode fiber device as the saturable absorber based on the Kerr effect of multimode interference is reported. Stable Q-switched operation of an Er(3+)/Yb(3+) co-doped fiber laser at 1559.5 nm was obtained at a pump power range of 190-510 mW with the repetition rate varying from 14.1 kHz to 35.2 kHz and the pulse duration ranging from 5.69 μs to 3.86 μs. A maximum pulse energy of 0.8 μJ at an average output power of 27.6 mW was achieved. This demonstrates a new modulation mechanism for realizing Q-switched all-fiber laser sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.