There has been growing attention on fairness considerations recently, especially in the context of intelligent decision making systems. Explainable recommendation systems, in particular, may suffer from both explanation bias and performance disparity. In this paper, we analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups. We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users, and that their recommendations may be biased by the training records of more active users, due to the nature of collaborative filtering, which leads to an unfair treatment by the system. We propose a fairness constrained approach via heuristic re-ranking to mitigate this unfairness problem in the context of explainable recommendation over knowledge graphs. We experiment on several real-world datasets with stateof-the-art knowledge graph-based explainable recommendation algorithms. The promising results show that our algorithm is not only able to provide high-quality explainable recommendations, but also reduces the recommendation unfairness in several respects.
In this paper, we propose quantized densely connected U-Nets for efficient visual landmark localization. The idea is that features of the same semantic meanings are globally reused across the stacked U-Nets. This dense connectivity largely improves the information flow, yielding improved localization accuracy. However, a vanilla dense design would suffer from critical efficiency issue in both training and testing. To solve this problem, we first propose order-K dense connectivity to trim off long-distance shortcuts; then, we use a memory-efficient implementation to significantly boost the training efficiency and investigate an iterative refinement that may slice the model size in half. Finally, to reduce the memory consumption and high precision operations both in training and testing, we further quantize weights, inputs, and gradients of our localization network to low bit-width numbers. We validate our approach in two tasks: human pose estimation and face alignment. The results show that our approach achieves state-of-the-art localization accuracy, but using ∼70% fewer parameters, ∼98% less model size and saving ∼75% training memory compared with other benchmark localizers. The code is available at https
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.