This paper proposes a time-space domain correlation-based method for gas leakage detection and location. It acquires the propagated signal on the skin of the plate by using a piezoelectric acoustic emission (AE) sensor array. The signal generated from the gas leakage hole (which diameter is less than 2 mm) is time continuous. By collecting and analyzing signals from different sensors’ positions in the array, the correlation among those signals in the time-space domain can be achieved. Then, the directional relationship between the sensor array and the leakage source can be calculated. The method successfully solves the real-time orientation problem of continuous ultrasonic signals generated from leakage sources (the orientation time is about 15 s once), and acquires high accuracy location information of leakage sources by the combination of multiple sets of orientation results. According to the experimental results, the mean value of the location absolute error is 5.83 mm on a one square meter plate, and the maximum location error is generally within a ±10 mm interval. Meanwhile, the error variance is less than 20.17.
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.