Ultrasound has been proven to be a valid tool for ranging, especially in water. In this paper, we design a high-resolution ultrasonic ranging system that uses a thin laser beam as an ultrasonic sensor. The laser sensing provides a noncontact method for ultrasound detection based on acousto-optic diffraction. Unlike conventional methods, the ultrasound transmitted from the transducer is recorded as the reference signal when it first passes through the laser. It can be used to improve the accuracy and resolution of the time-of-flight (TOF) by a cross-correlation method. Transducers with a central frequency of 1 MHz and diameters of 20 mm and 28 mm are used in the experiment. Five targets and a test piece are used to evaluate the ranging performance. The sound velocity is measured by the sound velocity profiler (SVP). The repeatability error of TOF is less than 4 ns, and the theoretical resolution of TOF is 0.4 ns. The results show a measurement resolution within one-tenth of the wavelength of ultrasound and an accuracy better than 0.3 mm for targets at a distance up to 0.8 m. The proposed system has potential applications in underwater ranging and thickness detection.
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.