A piezoresistive sensor based on ultralight and superelastic aerogel is reported to fabricate MXene/reduced graphene oxide (MX/rGO) hybrid 3D structures and utilize their pressure-sensitive characteristics. The MX/rGO aerogel not only combines the rGO's large specific surface area and the MXene's (TiC T ) high conductivity but also exhibits rich porous structure, which leads to performance better than that of single-component rGO or MXene in terms of the pressure sensor. The large nanosheets of rGO can prevent the poor oxidization of MXene by wrapping MXene inside the aerogel. More importantly, the piezoresistive sensor based on the MX/rGO aerogel shows extremely high sensitivity (22.56 kPa), fast response time (<200 ms), and good stability over 10 000 cycles. The piezoresistive sensor based on the MX/rGO hybrid 3D aerogel can easily capture the signal below 10 Pa, thus clearly testing the pulse of an adult at random. Based on its superior performance, it also demonstrates potential applications in measuring pressure distribution, distinguishing subtle strain, and monitoring healthy activity.
Since the successful synthesis of the first MXenes, application developments of this new family of two-dimensional materials on energy storage, electromagnetic interference shielding, transparent conductive electrodes and field-effect transistors, and other applications have been widely reported. However, no one has found or used the basic characteristics of greatly changed interlayer distances of MXene under an external pressure for a real application. Here we report a highly flexible and sensitive piezoresistive sensor based on this essential characteristics. An in situ transmission electron microscopy study directly illustrates the characteristics of greatly changed interlayer distances under an external pressure, supplying the basic working mechanism for the piezoresistive sensor. The resultant device also shows high sensitivity (Gauge Factor ~ 180.1), fast response (<30 ms) and extraordinarily reversible compressibility. The MXene-based piezoresistive sensor can detect human being’s subtle bending-release activities and other weak pressure.
Because of the mass density-dependence, an extra term should be added to the
expression of pressure. However, it should not appear in that of energy
according to both the general ensemble theory and basic thermodynamic
principle. We give a detail derivation of the thermodynamics with
density-dependent particle masses. With our recently determined quark mass
scaling, we study strange quark matter in this new thermodynamic treatment,
which still indicates a possible absolute stability as previously found.
However, the density behavior of the sound velocity is opposite to the previous
finding, but consistent with one of our recent publication. We have also
studied the structure of strange stars using the obtained equation of state.Comment: 6 pages, 6 PS figures, REVTeX styl
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.