Cancer side-population (SP) represents a sub-population of stem-like cancer cells that have an important role in drug resistance due to their high expression of the ATP-binding cassette transporter ABCG2 involved in drug export. Auranofin (AF), a clinical drug of gold complex that is used in treatment of rheumatoid arthritis, has been reported inducing tumor antiproliferation. However, whether AF can impact SP cells remains unclear. Our study showed that AF caused a depletion of SP cells and a downregulation of stem cell markers, and impaired their ability to form tumor colonies in vitro and incidence to develop tumors in vivo of lung cancer cells. Reactive oxygen species (ROS) had an important role in mediating AF-induced depletion of SP cells, which could be reversed by antioxidant NAC. Further study revealed that AF could also cause ATP depletion by inhibition of glycolysis. The depletion of cellular ATP might impair the function of ABCG2 pump, leading to increased drug accumulation within the cells and thus enhancing anticancer activity of chemotherapeutic agents such as adriamycin. Synergistic effect of AF and adriamycin was demonstrated both in vitro and in vivo. Simultaneous increase of ROS and inhibition of glycolysis is a novel strategy to eliminate stem-like cancer cells. Combination of AF with adriamycin seems to be promising to enhance therapeutic effectiveness.
Reactive oxygen species (ROS) have a crucial role in cell signaling and cellular functions. Mounting evidences suggest that abnormal increase of ROS is often observed in cancer cells and that this biochemical feature can be exploited for selective killing of the malignant cells. A naturally occurring compound phenethyl isothiocyanate (PEITC) has been shown to have promising anticancer activity by modulating intracellular ROS. Here we report a novel synthetic analog of PEITC with superior in vitro and in vivo antitumor effects. Mechanistic study showed that LBL21 induced a rapid depletion of intracellular glutathione (GSH), leading to abnormal ROS accumulation and mitochondrial dysfunction, evident by a decrease in mitochondrial respiration and transmembrane potential. Importantly, LBL21 exhibited the ability to abrogate stem cell-like cancer side population (SP) cells in non-small cell lung cancer A549 cells associated with a downregulation of stem cell markers including OCT4, ABCG2, SOX2 and CD133. Functionally, LBL21 inhibited the ability of cancer cells to form colonies in vitro and develop tumor in vivo. The therapeutic efficacy of LBL21 was further demonstrated in mice bearing A549 lung cancer xenografts. Our study suggests that the novel ROS-modulating agent LBL21 has promising anticancer activity with an advantage of elimination of stem-like cancer cells. This compound merits further study to evaluate its potential for use in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.