Zika virus (ZIKV) has rapidly emerged as a global public health concern. Viral NS2B-NS3 protease processes viral polyprotein and is essential for the virus replication, making it an attractive antiviral drug target. We report crystal structures at 1.58-angstrom resolution of the unlinked NS2B-NS3 protease from ZIKV as free enzyme and bound to a peptide reversely oriented at the active site. The unlinked NS2B-NS3 protease adopts a closed conformation in which NS2B engages NS3 to form an empty substrate-binding site. A second protease in the same crystal binds to the residues K14K15G16E17 from the neighboring NS3 in reverse orientation, resisting proteolysis. These features of ZIKV NS2B-NS3 protease may accelerate the discovery of structure-based antiviral drugs against ZIKV and related pathogenic flaviviruses.
Background: Dengue protease is a two-component protease that is important for viral replication. Results: An unlinked protease complex containing the NS2B regulatory region and the NS3 protease domain was obtained.
Conclusion:The unlinked protease complex produces dispersed cross-peaks in NMR spectra and exists predominantly in a closed conformation in solution.Significance: This new construct will be a useful tool for drug discovery against the dengue virus.
SUMMARY
The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEAD’s co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small molecule inhibitors. Our X-ray crystallography studies reveal that flufenamic acid, a non-steroidal anti-inflammatory drug (NSAID), binds to the central pocket of TEAD2 YBD. Our biochemical and functional analyses further demonstrate that binding of NSAIDs to TEAD inhibits TEAD-YAP-dependent transcription, cell migration and proliferation, indicating that the central pocket is important for TEAD function. Therefore, our studies discover a novel way of targeting TEAD transcription factors and set the stage for therapeutic development of specific TEAD-YAP inhibitors against human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.