The development of the type II clustered regularly interspaced short palindromic repeats (CRISPR) system has resulted in the revolution of genetic engineering, and this technology has been applied in the genome editing of various species. However, there are no reports about target-specific genome editing in shrimp. In this research, we developed a microinjection method for the ridgetail white prawn Exopalaemon carinicauda and successfully applied CRISPR/Cas9 technology to the genome editing of E. carinicauda. Through coinjection of mRNA of Cas9 nuclease and gRNA specialized for E. carinicauda chitinase 4 (EcChi4), shrimps with indel mutations were obtained. Further analysis showed that the mutations could be transmitted to the next generation. This is the first time that site-specific genome editing has been successfully demonstrated in a decapod, and will further contribute to the study of functional genomics in decapods.
White spot syndrome virus (WSSV) is a major pathogen in shrimp cultures. The interactions between viral proteins and their receptors on the surface of cells in a frontier target tissue are crucial for triggering an infection. In this study, a yeast two-hybrid (Y2H) library was constructed using cDNA obtained from the stomach and gut of Litopenaeus vannamei, to ascertain the role of envelope proteins in WSSV infection. For this purpose, VP37 was used as the bait in the Y2H library screening. Forty positive clones were detected after screening. The positive clones were analyzed and discriminated, and two clones belonging to the peritrophin family were subsequently confirmed as genuine positive clones. Sequence analysis revealed that both clones could be considered as the same gene, LV-peritrophin (LvPT). Co-immunoprecipitation confirmed the interaction between LvPT and VP37. Further studies in the Y2H system revealed that LvPT could also interact with other WSSV envelope proteins such as VP32, VP38A, VP39B, and VP41A. The distribution of LvPT in tissues revealed that LvPT was mainly expressed in the stomach than in other tissues. In addition, LvPT was found to be a secretory protein, and its chitin-binding ability was also confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.