BackgroundMesenchymal stem cells (MSCs) have been extensively explored as a promising therapeutic agent in the field of bone tissue engineering due to their osteogenic differentiation ability. In this study, the osteogenic differential ability and the effect of fibronectin and laminin on the osteogenic differentiation in four types of MSCs derived from placental tissue are compared to determine the ideal source for bone reconstruction tissue engineering.ResultsThe present study examines the osteogenic differentiation levels of four types of MSCs using alizarin red staining and quantifies the calcium levels and alkaline phosphatase (ALP) activity. In addition, this study examines the osteoblast differentiation protein markers osterix, collagen I, osteopontin, and osteocalcin using a Western blot assay. qPCR and EdU labeling assays were employed to identify the kinetics of osteogenic differentiation. Calcium deposit levels, ALP activity, and osteopontin and osteocalcin concentrations were determined to confirm the role of Extracellular matrix (ECM) components role on the osteogenic differentiation of MSCs. The data demonstrated that MSCs isolated from different layers of placenta had different potentials to differentiate into osteogenic cells. Importantly, AM-MSCs and UC-MSCs differentiated into the osteoblast stage more efficiently and quickly than CM-MSCs and DC-MSCs, which was associated with a decrease in their proliferation ability. Among the different types of MSCs, AM-MSCs and UC-MSCs had a higher osteogenic differentiation potential induced by fibronectin due to enhanced phosphorylation during the Akt and ERK pathways.ConclusionsTaken together, these results indicate that AM-MSCs and UC-MSCs possess a higher osteogenic potential, and fibronectin can robustly enhance the osteogenic potential of the Akt and ERK pathways.Electronic supplementary materialThe online version of this article (10.1186/s13578-019-0281-3) contains supplementary material, which is available to authorized users.
Considerable efforts have been made to increase the topological complexity of mechanically interlocked molecules over the years. Three‐dimensional catenated structures composed of two or several (usually symmetrical) cages are one representative example. However, owing to the lack of an efficient universal synthetic strategy, interlocked structures made up of dissymmetric cages are relatively rare. Since the space volume of the inner cavity of an interlocked structure is smaller than that outside it, we developed a novel synthetic approach with the voluminous reductant NaBH(OAc)3 that discriminates this space difference, and therefore selectively reduces the outer surface of a catenated dimer composed of two symmetric cages, thus yielding the corresponding catenane with dissymmetric cages. Insight into the template effect that facilitates the catenation of cages was provided by computational and experimental techniques.
Specific and sensitive detection and imaging of cancerrelated miRNA in living cells are desirable for cancer diagnosis and treatment. Because of the spatiotemporal variability of miRNA expression level during different cell cycles, signal amplification strategies that can be activated by external stimuli are required to image miRNAs on demand at desired times and selected locations. Herein, we develop a signal amplification strategy termed as the photoactivated DNA walker based on DNA nanoflares, which enables photocontrollable signal amplification imaging of cancer-related miRNA in single living cells. The developed method is achieved via combining photoactivated nucleic acid displacement reaction with the traditional exonuclease III (EXO III)-assisted DNA walker based on DNA nanoflares. This method is capable of on-demand activation of the DNA walker for dictated signal amplification imaging of cancer-related miRNA in single living cells. The developed method was demonstrated as a proof of concept to achieve photoactivated signal amplification imaging of miRNA-21 in single living HeLa cells via selective two-photon irradiation (λ = 740 nm) of single living HeLa cells by using confocal microscopy equipped with a femtosecond laser.
Constructing hierarchical superstructures to achieve comparable complexity and functions to proteins with four-level hierarchy is challenging, which relies on the elaboration of novel building blocks with complex structures. We present a series of catenated cages with unique structural complexity and tailorability. The rational design was realized as such: A catenane of two symmetric cages (CSC), CSC-1, with all rigid imine panels was converted to a catenane of two dissymmetric cages (CDC), CDC-1, with two exterior flexible amine panels, and CDC-5 was tailored from CDC-1 by introducing an additional methyl group on each blade to increase lateral hindrance. CDC-1s with the most irregular and flexible configuration formed supramolecular dimers, which self-organized into 3D continuous wavelike plank with a three-level hierarchy, previously undiscovered by conventional building blocks. A drastically different 3D triclinic crystalline phase with a four-level hierarchy and trigonal phase with a three-level hierarchy were constructed of distorted CSC-1s and the most symmetric CDC-5s, respectively. The wavelike plank exhibited the lowest order, and the triclinic phase had a lower order than the trigonal phase which had the highest order. It correlates with the configuration of the primary structures, namely, the most disordered shape of CDC-1, the low-order configuration of CSC-1, and the most ordered geometry of CDC-5. The catenated cages with subtle structural differences therefore provide a promising platform for the search of emerging hierarchical superstructures that might be applied to proton conductivity, ferroelectricity, and catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.