BackgroundStripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Increasingly evidences suggest that long intergenic ncRNAs (lincRNAs) are developmentally regulated and play important roles in development and stress responses of plants. However, identification of lincRNAs in wheat is still limited comparing with functional gene expression.ResultsThe transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR31 and Bgt race E09 at 1, 2, and 3 days post-inoculation was recapitulated to detect the lincRNAs. Here, 283 differential expressed lincRNAs were identified from 58218 putative lincRNAs, which account for 31.2 % of transcriptome. Of which, 254 DE-LincRNAs responded to the Bgt stress, and 52 lincRNAs in Pst. Among them, 1328 SnRNP motifs (sm sites) were detected and showed RRU4–11RR sm site element and consensus RRU1–9VU1–7RR SnRNP motifs, where the total number of uridine was more than 3 but less than 11. Additionally, 101 DE-lincRNAs were predicted as targets of miRNA by psRNATarget, while 5 target mimics were identified using target mimicry search in TAPIR.ConclusionsTaken together, our findings indicate that the lincRNA of wheat responded to Bgt and Pst stress and played important roles in splicesome and inter-regulating with miRNA. The sm site of wheat showed a more complex construction than that in mammal and model plant. The mass sequence data generated in this study provide a cue for future functional and molecular research on wheat–fungus interactions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2570-0) contains supplementary material, which is available to authorized users.
The NAM, ATAF1/2, and CUC2 (NAC) transcription factors (TFs) constitute the largest plant-specific TF superfamily, and play important roles in various physiological processes, including stress responses. Stripe rust and powdery mildew are the most damaging of the fungal diseases that afflict wheat (Triticum aestivum L.). However, studies on Triticum aestivum NAC (TaNAC)s’ role in resistance to the two diseases are still limited, especially in an overall comparative analysis of TaNACs responding or not to fungal stress. In the present study, 186 TaNAC transcripts were obtained from the resistant hexaploid wheat line N9134 under fungal stress, and 180 new transcripts were submitted to GenBank. Statistical results show that 35.1% (54/154) of TaNAC genes responded to stripe rust and powdery mildew in the seedling stage. “Abnormal” coding transcripts of differentially expressed (DE)-TaNAC genes in wheat responding to fungal stress were found in a significantly higher proportion (24/117 vs. 8/69, p = 0.0098) than in non-DE-NACs. This hinted that the alternative splicing of TaNAC genes was active in transcriptional or post-transcriptional regulation during plant-pathogen interactions. Full-length NAC proteins were classified into nine groups via phylogenetic analysis. Multiple-sequence alignment revealed diversity in the C-terminal structural organization, but the differentially expressed gene (DEG)-encoding proteins enriched in Subgroups VI and VII were conserved, with WV[L/V]CR amino acid residues in Motif 7 following the NAM domain. Our data that showed TaNAC TFs responded to fungal disease, which was affected by expression levels and by the regulation of multifarious transcript variants. These data for TaNAC responses to stripe rust and/or powdery mildew and their numerous structural variants provide a good resource for NAC function–mechanism analysis in the context of biotic-stress tolerance in wheat.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important foliar disease of wheat. Two dominant stripe rust resistant genes YrSM139-1B and YrSM139-2D were pyramided in bread wheat cultivar Shaanmai 139; one from wild emmer and the other from Thinopyrum intermedium. Three near-isogenic F7:8 line pairs (contrasting RILs), N122-1013R/S, N122-185R/S, and N122-1812R/S, independently derived from different F2 plants and differing at the YrSM139-1B locus were generated from the cross Shaanmai 139 × Hu 901-19 through marker-assisted selection. A large F2:3 population from cross N122-1013R × N122-1013S tested for stripe rust response and subjected to analysis with markers in the 1BS10-0.5 bin region using SSR expressed sequence tags (EST) and site-specific sequence markers developed from the 90 K Illumina iSelect SNP array. Five EST-STS markers and four allele-specific PCR markers were mapped to the YrSM139-1B region. The 30.5 cM genetic map for YrSM139-1B consisted of nine markers, two of which were closer to YrSM139-1B than Xgwm273, which was used in producing the contrasting RIL pairs. Race response data and allelism tests showed that YrSM139-1B is different from Yr10, Yr15, and Yr24/26/CH42.
The grain yield of a crop represents the expression of many thousands of genes integrated over the life of each of the component plants in the crop in response to environment, as well as severely affected by parasite, including pest and pathogen. Plant has no capacity to elude parasite other than by altering intrinsic gene expression or gene combinations to improve performance under pathogen. Transcriptional control is a crucial part of genes expression, especially in plant response to a range of stresses. Wheat (Triticum aestivum L.) is one of the most important cultivated crops, while its production isseverely affected by stripe rust and powdery mildew. Unfortunately, coupled with the loss of genetic diversity in wheat breeding programs, the disease resistance germplasms are more and more scarce due to the frequently variation of epidemic virulent race. Research carried out in the past few years has been productive in identifying TFs for regulating resistance to pathogen stress in wheat and other plant species. The increasing studies showed that Transcription Factors (TFs) are potent positive, negative, cis-and trans-regulators activating the functional gene. Herein, we highlighted the recent progress in elucidating the roles of TFs in wheat defense against pathogen, as well as the potential relationship between transcription factors family with regulating pathogen type, although there should be no expectation that everlasting favorable genes performance will be discovered for variable environments. Furthermore, we discussed new ways to improve varieties' resistance using biotechnology combining with empirical breeding program. This leads to new ideas to enhance wheat resistance or tolerance to disease in virtue of the progress of wheat genetic engineering. This maybe a new way to improve adaptive plasticity of wheat in highly variable environments as aresult of introducing greater diversity of resistance gene pool to cropping systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.